Visible to the public Biblio

Filters: Keyword is stepped frequency radar  [Clear All Filters]
2022-08-12
Kafedziski, Venceslav.  2021.  Compressive Sampling Stepped Frequency GPR Using Probabilistic Structured Sparsity Models. 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (℡SIKS). :139—144.
We investigate a compressive sampling (CS) stepped frequency ground penetrating radar for detection of underground objects, which uses Bayesian estimation and a probabilistic model for the target support. Due to the underground targets being sparse, the B-scan is a sparse image. Using the CS principle, the stepped frequency radar is implemented using a subset of random frequencies at each antenna position. For image reconstruction we use Markov Chain and Markov Random Field models for the target support in the B-scan, where we also estimate the model parameters using the Expectation Maximization algorithm. The approach is tested using Web radar data obtained by measuring the signal responses scattered off land mine targets in a laboratory experimental setup. Our approach results in improved performance compared to the standard denoising algorithm for image reconstruction.
2020-09-14
Kafedziski, Venceslav.  2019.  Compressive Sampling Stepped Frequency Ground Penetrating Radar Using Group Sparsity and Markov Chain Sparsity Model. 2019 14th International Conference on Advanced Technologies, Systems and Services in Telecommunications (℡SIKS). :265–268.
We investigate an implementation of a compressive sampling (CS) stepped frequency ground penetrating radar. Due to the small number of targets, the B-scan is represented as a sparse image. Due to the nature of stepped frequency radar, smaller number of random frequencies can be used to obtain each A-scan (sparse delays). Also, the measurements obtained from different antenna positions can be reduced to a smaller number of random antenna positions. We also use the structure in the B-scan, i.e. the shape of the targets, which can be known, for instance, when detecting land mines. We demonstrate our method using radar data available from the Web from the land mine targets buried in the ground. We use group sparsity, i.e. we assume that the targets have some non-zero (and presumably known) dimension in the cross-range coordinate of the B-scan. For such targets, we also use the Markov chain model for the targets, where we simultaneously estimate the model parameters using the EMturboGAMP algorithm. Both approaches result in improved performance.