Visible to the public Biblio

Filters: Keyword is high-resolution radar signals  [Clear All Filters]
2020-09-14
Feng, Qi, Huang, Jianjun, Yang, Zhaocheng.  2019.  Jointly Optimized Target Detection and Tracking Using Compressive Samples. IEEE Access. 7:73675–73684.
In this paper, we consider the problem of joint target detection and tracking in compressive sampling and processing (CSP-JDT). CSP can process the compressive samples of sparse signals directly without signal reconstruction, which is suitable for handling high-resolution radar signals. However, in CSP, the radar target detection and tracking problems are usually solved separately or by a two-stage strategy, which cannot obtain a globally optimal solution. To jointly optimize the target detection and tracking performance and inspired by the optimal Bayes joint decision and estimation (JDE) framework, a jointly optimized target detection and tracking algorithm in CSP is proposed. Since detection and tracking are highly correlated, we first develop a measurement matrix construction method to acquire the compressive samples, and then a joint CSP Bayesian approach is developed for target detection and tracking. The experimental results demonstrate that the proposed method outperforms the two-stage algorithms in terms of the joint performance metric.