Visible to the public Biblio

Filters: Keyword is artificial immune systems  [Clear All Filters]
2023-01-13
Kaiser, Florian K., Andris, Leon J., Tennig, Tim F., Iser, Jonas M., Wiens, Marcus, Schultmann, Frank.  2022.  Cyber threat intelligence enabled automated attack incident response. 2022 3rd International Conference on Next Generation Computing Applications (NextComp). :1—6.
Cyber attacks keep states, companies and individuals at bay, draining precious resources including time, money, and reputation. Attackers thereby seem to have a first mover advantage leading to a dynamic defender attacker game. Automated approaches taking advantage of Cyber Threat Intelligence on past attacks bear the potential to empower security professionals and hence increase cyber security. Consistently, there has been a lot of research on automated approaches in cyber risk management including works on predictive attack algorithms and threat hunting. Combining data on countermeasures from “MITRE Detection, Denial, and Disruption Framework Empowering Network Defense” and adversarial data from “MITRE Adversarial Tactics, Techniques and Common Knowledge” this work aims at developing methods that enable highly precise and efficient automatic incident response. We introduce Attack Incident Responder, a methodology working with simple heuristics to find the most efficient sets of counter-measures for hypothesized attacks. By doing so, the work contributes to narrowing the attackers first mover advantage. Experimental results are promising high average precisions in predicting effiective defenses when using the methodology. In addition, we compare the proposed defense measures against a static set of defensive techniques offering robust security against observed attacks. Furthermore, we combine the approach of automated incidence response to an approach for threat hunting enabling full automation of security operation centers. By this means, we define a threshold in the precision of attack hypothesis generation that must be met for predictive defense algorithms to outperform the baseline. The calculated threshold can be used to evaluate attack hypothesis generation algorithms. The presented methodology for automated incident response may be a valuable support for information security professionals. Last, the work elaborates on the combination of static base defense with adaptive incidence response for generating a bio-inspired artificial immune system for computerized networks.
2021-04-08
Igbe, O., Saadawi, T..  2018.  Insider Threat Detection using an Artificial Immune system Algorithm. 2018 9th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :297—302.
Insider threats result from legitimate users abusing their privileges, causing tremendous damage or losses. Malicious insiders can be the main threats to an organization. This paper presents an anomaly detection system for detecting insider threat activities in an organization using an ensemble that consists of negative selection algorithms (NSA). The proposed system classifies a selected user activity into either of two classes: "normal" or "malicious." The effectiveness of our proposed detection system is evaluated using case studies from the computer emergency response team (CERT) synthetic insider threat dataset. Our results show that the proposed method is very effective in detecting insider threats.
2020-05-26
Jim, Lincy Elizebeth, Chacko, Jim.  2019.  Decision Tree based AIS strategy for Intrusion Detection in MANET. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :1191–1195.
Mobile Ad hoc Networks (MANETs) are wireless networks that are void of fixed infrastructure as the communication between nodes are dependent on the liaison of each node in the network. The efficacy of MANET in critical scenarios like battlefield communications, natural disaster require new security strategies and policies to guarantee the integrity of nodes in the network. Due to the inherent frailty of MANETs, new security measures need to be developed to defend them. Intrusion Detection strategy used in wired networks are unbefitting for wireless networks due to reasons not limited to resource constraints of participating nodes and nature of communication. Nodes in MANET utilize multi hop communication to forward packets and this result in consumption of resources like battery and memory. The intruder or cheat nodes decide to cooperate or non-cooperate with other nodes. The cheat nodes reduce the overall effectiveness of network communications such as reduced packet delivery ratio and sometimes increase the congestion of the network by forwarding the packet to wrong destination and causing packets to take more times to reach the appropriate final destination. In this paper a decision tree based artificial immune system (AIS) strategy is utilized to detect such cheat nodes thereby improving the efficiency of packet delivery.
2020-01-20
Elisa, Noe, Yang, Longzhi, Fu, Xin, Naik, Nitin.  2019.  Dendritic Cell Algorithm Enhancement Using Fuzzy Inference System for Network Intrusion Detection. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.

Dendritic cell algorithm (DCA) is an immune-inspired classification algorithm which is developed for the purpose of anomaly detection in computer networks. The DCA uses a weighted function in its context detection phase to process three categories of input signals including safe, danger and pathogenic associated molecular pattern to three output context values termed as co-stimulatory, mature and semi-mature, which are then used to perform classification. The weighted function used by the DCA requires either manually pre-defined weights usually provided by the immunologists, or empirically derived weights from the training dataset. Neither of these is sufficiently flexible to work with different datasets to produce optimum classification result. To address such limitation, this work proposes an approach for computing the three output context values of the DCA by employing the recently proposed TSK+ fuzzy inference system, such that the weights are always optimal for the provided data set regarding a specific application. The proposed approach was validated and evaluated by applying it to the two popular datasets KDD99 and UNSW NB15. The results from the experiments demonstrate that, the proposed approach outperforms the conventional DCA in terms of classification accuracy.

Ou, Chung-Ming.  2019.  Host-based Intrusion Detection Systems Inspired by Machine Learning of Agent-Based Artificial Immune Systems. 2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA). :1–5.

An adaptable agent-based IDS (AAIDS) inspired by the danger theory of artificial immune system is proposed. The learning mechanism of AAIDS is designed by emulating how dendritic cells (DC) in immune systems detect and classify danger signals. AG agent, DC agent and TC agent coordinate together and respond to system calls directly rather than analyze network packets. Simulations show AAIDS can determine several critical scenarios of the system behaviors where packet analysis is impractical.

2019-04-05
Lysenko, S., Bobrovnikova, K., Savenko, O..  2018.  A Botnet Detection Approach Based on the Clonal Selection Algorithm. 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT). :424-428.

The paper presents a new technique for the botnets' detection in the corporate area networks. It is based on the usage of the algorithms of the artificial immune systems. Proposed approach is able to distinguish benign network traffic from malicious one using the clonal selection algorithm taking into account the features of the botnet's presence in the network. An approach present the main improvements of the BotGRABBER system. It is able to detect the IRC, HTTP, DNS and P2P botnets.

2017-12-28
Tang, H..  2016.  A Network IDS Model Based on Improved Artificial Immune Algorithm. 2016 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :46–50.

The network intrusion detection problem domain is described with mathematical knowledge in this paper, and a novel IDS detection model based on immune mechanism is designed. We study the key modules of IDS system, detector tolerance module and the algorithms of IDS detection intensively. Then, the continuous bit matching algorithm for computing affinity is improved by further analysis. At the same time, we adopt controllable variation and random variation, as well as dynamic demotion to improve the dynamic clonal selection algorithm. Finally the experimental simulations verify that the novel artificial immune algorithm has better detection rate and lower noise factor.

2017-02-27
Lokesh, M. R., Kumaraswamy, Y. S..  2015.  Healing process towards resiliency in cyber-physical system: A modified danger theory based artifical immune recogization2 algorithm approach. 2015 IEEE International Conference on Computer Graphics, Vision and Information Security (CGVIS). :226–232.

Healing Process is a major role in developing resiliency in cyber-physical system where the environment is diverse in nature. Cyber-physical system is modelled with Multi Agent Paradigm and biological inspired Danger Theory based-Artificial Immune Recognization2 Algorithm Methodology towards developing healing process. The Proposed methodology is implemented in a simulation environment and percentage of Convergence rates shown in achieving accuracy in the healing process to resiliency in cyber-physical system environment is shown.

2017-02-14
M. Bere, H. Muyingi.  2015.  "Initial investigation of Industrial Control System (ICS) security using Artificial Immune System (AIS)". 2015 International Conference on Emerging Trends in Networks and Computer Communications (ETNCC). :79-84.

Industrial Control Systems (ICS) which among others are comprised of Supervisory Control and Data Acquisition (SCADA) and Distributed Control Systems (DCS) are used to control industrial processes. ICS have now been connected to other Information Technology (IT) systems and have as a result become vulnerable to Advanced Persistent Threats (APT). APTs are targeted attacks that use zero-day attacks to attack systems. Current ICS security mechanisms fail to deter APTs from infiltrating ICS. An analysis of possible solutions to deter APTs was done. This paper proposes the use of Artificial Immune Systems to secure ICS from APTs.

2015-05-06
Barani, F..  2014.  A hybrid approach for dynamic intrusion detection in ad hoc networks using genetic algorithm and artificial immune system. Intelligent Systems (ICIS), 2014 Iranian Conference on. :1-6.

Mobile ad hoc network (MANET) is a self-created and self organized network of wireless mobile nodes. Due to special characteristics of these networks, security issue is a difficult task to achieve. Hence, applying current intrusion detection techniques developed for fixed networks is not sufficient for MANETs. In this paper, we proposed an approach based on genetic algorithm (GA) and artificial immune system (AIS), called GAAIS, for dynamic intrusion detection in AODV-based MANETs. GAAIS is able to adapting itself to network topology changes using two updating methods: partial and total. Each normal feature vector extracted from network traffic is represented by a hypersphere with fix radius. A set of spherical detector is generated using NicheMGA algorithm for covering the nonself space. Spherical detectors are used for detecting anomaly in network traffic. The performance of GAAIS is evaluated for detecting several types of routing attacks simulated using the NS2 simulator, such as Flooding, Blackhole, Neighbor, Rushing, and Wormhole. Experimental results show that GAAIS is more efficient in comparison with similar approaches.

2015-05-05
Ling-Xi Peng, Tian-Wei Chen.  2014.  Automated Intrusion Response System Algorithm with Danger Theory. Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2014 International Conference on. :31-34.

Intrusion response is a new generation of technology basing on active defence idea, which has very prominent significance on the protection of network security. However, the existing automatic intrusion response systems are difficult to judge the real "danger" of invasion or attack. In this study, an immune-inspired adaptive automated intrusion response system model, named as AIAIM, was given. With the descriptions of self, non-self, memory detector, mature detector and immature detector of the network transactions, the real-time network danger evaluation equations of host and network are built up. Then, the automated response polices are taken or adjusted according to the real-time danger and attack intensity, which not only solve the problem that the current automated response system models could not detect the true intrusions or attack actions, but also greatly reduce the response times and response costs. Theory analysis and experimental results prove that AIAIM provides a positive and active network security method, which will help to overcome the limitations of traditional passive network security system.