Visible to the public Biblio

Filters: Keyword is DR  [Clear All Filters]
2015-05-05
Shahgoshtasbi, D., Jamshidi, M.M..  2014.  A New Intelligent Neuro #x2013;Fuzzy Paradigm for Energy-Efficient Homes. Systems Journal, IEEE. 8:664-673.

Demand response (DR), which is the action voluntarily taken by a consumer to adjust amount or timing of its energy consumption, has an important role in improving energy efficiency. With DR, we can shift electrical load from peak demand time to other periods based on changes in price signal. At residential level, automated energy management systems (EMS) have been developed to assist users in responding to price changes in dynamic pricing systems. In this paper, a new intelligent EMS (iEMS) in a smart house is presented. It consists of two parts: a fuzzy subsystem and an intelligent lookup table. The fuzzy subsystem is based on its fuzzy rules and inputs that produce the proper output for the intelligent lookup table. The second part, whose core is a new model of an associative neural network, is able to map inputs to desired outputs. The structure of the associative neural network is presented and discussed. The intelligent lookup table takes three types of inputs that come from the fuzzy subsystem, outside sensors, and feedback outputs. Whatever is trained in this lookup table are different scenarios in different conditions. This system is able to find the best energy-efficiency scenario in different situations.