Visible to the public Biblio

Filters: Keyword is proof-of-work blockchain  [Clear All Filters]
2021-03-09
Xiao, Y., Zhang, N., Lou, W., Hou, Y. T..  2020.  Modeling the Impact of Network Connectivity on Consensus Security of Proof-of-Work Blockchain. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1648—1657.

Blockchain, the technology behind the popular Bitcoin, is considered a "security by design" system as it is meant to create security among a group of distrustful parties yet without a central trusted authority. The security of blockchain relies on the premise of honest-majority, namely, the blockchain system is assumed to be secure as long as the majority of consensus voting power is honest. And in the case of proof-of-work (PoW) blockchain, adversaries cannot control more than 50% of the network's gross computing power. However, this 50% threshold is based on the analysis of computing power only, with implicit and idealistic assumptions on the network and node behavior. Recent researches have alluded that factors such as network connectivity, presence of blockchain forks, and mining strategy could undermine the consensus security assured by the honest-majority, but neither concrete analysis nor quantitative evaluation is provided. In this paper we fill the gap by proposing an analytical model to assess the impact of network connectivity on the consensus security of PoW blockchain under different adversary models. We apply our analytical model to two adversarial scenarios: 1) honest-but-potentially-colluding, 2) selfish mining. For each scenario, we quantify the communication capability of nodes involved in a fork race and estimate the adversary's mining revenue and its impact on security properties of the consensus protocol. Simulation results validated our analysis. Our modeling and analysis provide a paradigm for assessing the security impact of various factors in a distributed consensus system.

2020-09-28
Yang, Xinle, Chen, Yang, Chen, Xiaohu.  2019.  Effective Scheme against 51% Attack on Proof-of-Work Blockchain with History Weighted Information. 2019 IEEE International Conference on Blockchain (Blockchain). :261–265.
Proof-of-Work (PoW) is a popular protocol used in Blockchain systems to resolve double-spending problems. However, if an attacker has access to calculation hash power greater than half of the total hash power, this attacker can create a double-spending attack or 51% attack. The cost of creating a 51% attack is surprisingly low if hash power is abundantly available. That posts a great threat to lots of PoW blockchains. We propose a technique to combine history weighted information of miners with the total calculation difficulty to alleviate the 51% attack problem. Analysis indicates that with the new technique, the cost of a traditional attack is increased by two orders of magnitude.