Biblio
Filters: Keyword is privacy constraint [Clear All Filters]
Privacy-Aware Quickest Change Detection. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :5999—6003.
.
2020. This paper considers the problem of the quickest detection of a change in distribution while taking privacy considerations into account. Our goal is to sanitize the signal to satisfy information privacy requirements while being able to detect a change quickly. We formulate the privacy-aware quickest change detection (QCD) problem by including a privacy constraint to Lorden's minimax formulation. We show that the Generalized Likelihood Ratio (GLR) CuSum achieves asymptotic optimality with a properly designed sanitization channel and formulate the design of this sanitization channel as an optimization problem. For computational tractability, a continuous relaxation for the discrete counting constraint is proposed and the augmented Lagrangian method is applied to obtain locally optimal solutions.
Optimizing Spectrum Pooling for Multi-Tenant C-RAN Under Privacy Constraints. 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). :1–5.
.
2018. This work studies the optimization of spectrum pooling for the downlink of a multi-tenant Cloud Radio Access Network (C-RAN) system in the presence of inter-tenant privacy constraints. The spectrum available for downlink transmission is partitioned into private and shared subbands, and the participating operators cooperate to serve the user equipments (UEs) on the shared subband. The network of each operator consists of a cloud processor (CP) that is connected to proprietary radio units (RUs) by means of finite-capacity fronthaul links. In order to enable inter-operator cooperation, the CPs of the participating operators are also connected by finite-capacity backhaul links. Inter-operator cooperation may hence result in loss of privacy. The problem of optimizing the bandwidth allocation, precoding, and fronthaul/backhaul compression strategies is tackled under constraints on backhaul and fronthaul capacity, as well as on per-RU transmit power and inter-onerator privacy.