Biblio
Filters: Keyword is Feedback loop [Clear All Filters]
Motivation Generator: An Empirical Model of Intrinsic Motivation for Learning. 2021 IEEE International Conference on Engineering, Technology & Education (TALE). :1001–1005.
.
2021. In present research, an empirical model for building and maintaining students' intrinsic motivation to learn is proposed. Unlike many other models of motivation, this model is not based on psychological theories but is derived directly from empirical observations made by experienced learners and educators. Thanks to empirical nature of the proposed model, its application to educational practice may be more straightforward in comparison with assumptions-based motivation theories. Interestingly, the structure of the proposed model resembles to some extent the structure of the oscillator circuit containing an amplifier and a positive feedback loop.
ISSN: 2470-6698
Runtime Recovery of Web Applications under Zero-Day ReDoS Attacks. 2021 IEEE Symposium on Security and Privacy (SP). :1575—1588.
.
2021. Regular expression denial of service (ReDoS)— which exploits the super-linear running time of matching regular expressions against carefully crafted inputs—is an emerging class of DoS attacks to web services. One challenging question for a victim web service under ReDoS attacks is how to quickly recover its normal operation after ReDoS attacks, especially these zero-day ones exploiting previously unknown vulnerabilities.In this paper, we present RegexNet, the first payload-based, automated, reactive ReDoS recovery system for web services. RegexNet adopts a learning model, which is updated constantly in a feedback loop during runtime, to classify payloads of upcoming requests including the request contents and database query responses. If detected as a cause leading to ReDoS, RegexNet migrates those requests to a sandbox and isolates their execution for a fast, first-measure recovery.We have implemented a RegexNet prototype and integrated it with HAProxy and Node.js. Evaluation results show that RegexNet is effective in recovering the performance of web services against zero-day ReDoS attacks, responsive on reacting to attacks in sub-minute, and resilient to different ReDoS attack types including adaptive ones that are designed to evade RegexNet on purpose.
Privacy in Feedback: The Differentially Private LQG. 2018 Annual American Control Conference (ACC). :3386–3391.
.
2018. Information communicated within cyber-physical systems (CPSs) is often used in determining the physical states of such systems, and malicious adversaries may intercept these communications in order to infer future states of a CPS or its components. Accordingly, there arises a need to protect the state values of a system. Recently, the notion of differential privacy has been used to protect state trajectories in dynamical systems, and it is this notion of privacy that we use here to protect the state trajectories of CPSs. We incorporate a cloud computer to coordinate the agents comprising the CPSs of interest, and the cloud offers the ability to remotely coordinate many agents, rapidly perform computations, and broadcast the results, making it a natural fit for systems with many interacting agents or components. Striving for broad applicability, we solve infinite-horizon linear-quadratic-regulator (LQR) problems, and each agent protects its own state trajectory by adding noise to its states before they are sent to the cloud. The cloud then uses these state values to generate optimal inputs for the agents. As a result, private data are fed into feedback loops at each iteration, and each noisy term affects every future state of every agent. In this paper, we show that the differentially private LQR problem can be related to the well-studied linear-quadratic-Gaussian (LQG) problem, and we provide bounds on how agents' privacy requirements affect the cloud's ability to generate optimal feedback control values for the agents. These results are illustrated in numerical simulations.