Visible to the public Biblio

Filters: Keyword is field buses  [Clear All Filters]
2019-11-12
E.V., Jaideep Varier, V., Prabakar, Balamurugan, Karthigha.  2019.  Design of Generic Verification Procedure for IIC Protocol in UVM. 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA). :1146-1150.

With the growth of technology, designs became more complex and may contain bugs. This makes verification an indispensable part in product development. UVM describe a standard method for verification of designs which is reusable and portable. This paper verifies IIC bus protocol using Universal Verification Methodology. IIC controller is designed in Verilog using Vivado. It have APB interface and its function and code coverage is carried out in Mentor graphic Questasim 10.4e. This work achieved 83.87% code coverage and 91.11% functional coverage.

2018-09-05
King, Z., Yu, Shucheng.  2017.  Investigating and securing communications in the Controller Area Network (CAN). 2017 International Conference on Computing, Networking and Communications (ICNC). :814–818.
The Controller Area Network (CAN) is a broadcast communications network invented by Robert Bosch GmbH in 1986. CAN is the standard communication network found in automobiles, industry equipment, and many space applications. To be used in these environments, CAN is designed for efficiency and reliability, rather than security. This research paper closely examines the security risks within the CAN protocol and proposes a feasible solution. In this research, we investigate the problems with implementing certain security features in the CAN protocol, such as message authentication and protections against replay and denial-of-service (DoS) attacks. We identify the restrictions of the CAN bus, and we demonstrate how our proposed implementation meets these restrictions. Many previously proposed solutions lack security, feasibility, and/or efficiency; however, a solution must not drastically hinder the real-time operation speed of the network. The solution proposed in this research is tested with a simulative CAN environment. This paper proposes an alteration to the standard CAN bus nodes and the CAN protocol to better protect automobiles and other CAN-related systems from attacks.
2015-05-06
Vollmer, T., Manic, M., Linda, O..  2014.  Autonomic Intelligent Cyber-Sensor to Support Industrial Control Network Awareness. Industrial Informatics, IEEE Transactions on. 10:1647-1658.

The proliferation of digital devices in a networked industrial ecosystem, along with an exponential growth in complexity and scope, has resulted in elevated security concerns and management complexity issues. This paper describes a novel architecture utilizing concepts of autonomic computing and a simple object access protocol (SOAP)-based interface to metadata access points (IF-MAP) external communication layer to create a network security sensor. This approach simplifies integration of legacy software and supports a secure, scalable, and self-managed framework. The contribution of this paper is twofold: 1) A flexible two-level communication layer based on autonomic computing and service oriented architecture is detailed and 2) three complementary modules that dynamically reconfigure in response to a changing environment are presented. One module utilizes clustering and fuzzy logic to monitor traffic for abnormal behavior. Another module passively monitors network traffic and deploys deceptive virtual network hosts. These components of the sensor system were implemented in C++ and PERL and utilize a common internal D-Bus communication mechanism. A proof of concept prototype was deployed on a mixed-use test network showing the possible real-world applicability. In testing, 45 of the 46 network attached devices were recognized and 10 of the 12 emulated devices were created with specific operating system and port configurations. In addition, the anomaly detection algorithm achieved a 99.9% recognition rate. All output from the modules were correctly distributed using the common communication structure.

Vollmer, T., Manic, M., Linda, O..  2014.  Autonomic Intelligent Cyber-Sensor to Support Industrial Control Network Awareness. Industrial Informatics, IEEE Transactions on. 10:1647-1658.

The proliferation of digital devices in a networked industrial ecosystem, along with an exponential growth in complexity and scope, has resulted in elevated security concerns and management complexity issues. This paper describes a novel architecture utilizing concepts of autonomic computing and a simple object access protocol (SOAP)-based interface to metadata access points (IF-MAP) external communication layer to create a network security sensor. This approach simplifies integration of legacy software and supports a secure, scalable, and self-managed framework. The contribution of this paper is twofold: 1) A flexible two-level communication layer based on autonomic computing and service oriented architecture is detailed and 2) three complementary modules that dynamically reconfigure in response to a changing environment are presented. One module utilizes clustering and fuzzy logic to monitor traffic for abnormal behavior. Another module passively monitors network traffic and deploys deceptive virtual network hosts. These components of the sensor system were implemented in C++ and PERL and utilize a common internal D-Bus communication mechanism. A proof of concept prototype was deployed on a mixed-use test network showing the possible real-world applicability. In testing, 45 of the 46 network attached devices were recognized and 10 of the 12 emulated devices were created with specific operating system and port configurations. In addition, the anomaly detection algorithm achieved a 99.9% recognition rate. All output from the modules were correctly distributed using the common communication structure.

2015-05-05
Bande, V., Pop, S., Pitica, D..  2014.  Smart diagnose procedure for data acquisition systems inside dams. Design and Technology in Electronic Packaging (SIITME), 2014 IEEE 20th International Symposium for. :179-182.

This scientific paper reveals an intelligent system for data acquisition for dam monitoring and diagnose. This system is built around the RS485 communication standard and uses its own communication protocol [2]. The aim of the system is to monitor all signal levels inside the communication bus, respectively to detect the out of action data loggers. The diagnose test extracts the following functional parameters: supply voltage and the absolute value and common mode value for differential signals used in data transmission (denoted with “A” and “B”). Analyzing this acquired information, it's possible to find short-circuits or open-circuits across the communication bus. The measurement and signal processing functions, for flaws, are implemented inside the system's central processing unit. The next testing step is finding the out of action data loggers and is being made by trying to communicate with every data logger inside the network. The lack of any response from a data logger is interpreted as an error and using the code of the data logger's microcontroller, it is possible to find its exact position inside the dam infrastructure. The novelty of this procedure is the fact that it completely automates the diagnose procedure, which, until now, was made visually by checking every data logger.