Biblio
Filters: Keyword is system modelling [Clear All Filters]
Design of Smart Risk Assessment System for Agricultural Products and Food Safety Inspection Based on Multivariate Data Analysis. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). :1206—1210.
.
2022. Design of smart risk assessment system for the agricultural products and the food safety inspection based on multivariate data analysis is studied in this paper. The designed quality traceability system also requires the collaboration and cooperation of various companies in the supply chain, and a unified database, including agricultural product identification system, code system and security status system, is required to record in detail the trajectory and status of agricultural products in the logistics chain. For the improvement, the multivariate data analysis is combined. Hadoop cannot be used on hardware with high price and high reliability. Even for groups with high probability of the problems, HDFS will continue to use when facing problems, and at the same time. Hence, the core model of HDFS is applied into the system. In the verification part, the analytic performance is simulated.
Learning from Mutants: Using Code Mutation to Learn and Monitor Invariants of a Cyber-Physical System. 2018 IEEE Symposium on Security and Privacy (SP). :648–660.
.
2018. Cyber-physical systems (CPS) consist of sensors, actuators, and controllers all communicating over a network; if any subset becomes compromised, an attacker could cause significant damage. With access to data logs and a model of the CPS, the physical effects of an attack could potentially be detected before any damage is done. Manually building a model that is accurate enough in practice, however, is extremely difficult. In this paper, we propose a novel approach for constructing models of CPS automatically, by applying supervised machine learning to data traces obtained after systematically seeding their software components with faults ("mutants"). We demonstrate the efficacy of this approach on the simulator of a real-world water purification plant, presenting a framework that automatically generates mutants, collects data traces, and learns an SVM-based model. Using cross-validation and statistical model checking, we show that the learnt model characterises an invariant physical property of the system. Furthermore, we demonstrate the usefulness of the invariant by subjecting the system to 55 network and code-modification attacks, and showing that it can detect 85% of them from the data logs generated at runtime.