Visible to the public Biblio

Filters: Keyword is adaptive random testing  [Clear All Filters]
2022-07-29
Lv, Tianxiang, Bao, Qihao, Chen, Haibo, Zhang, Chi.  2021.  A Testing Method for Object-oriented Program based on Adaptive Random Testing with Variable Probability. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :1155–1156.
Object-oriented program (OOP) is very popular in these years for its advantages, but the testing method for OOP is still not mature enough. To deal with the problem that it is impossible to generate the probability density function by simply numeralizing a point in the test case caused by the complex structure of the object-oriented test case, we propose the Adaptive Random Testing through Test Profile for Object-Oriented software (ARTTP-OO). It generates a test case at the edge of the input field and calculates the distance between object-oriented test cases using Object and Method Invocation Sequence Similarity (OMISS) metric formula. And the probability density function is generated by the distance to select the test cases, thereby realizing the application of ARTTP algorithm in OOP. The experimental results indicate the proposed ARTTP-OO consumes less time cost without reducing the detection effectiveness.
2022-05-03
Mu, Yanzhou, Wang, Zan, Liu, Shuang, Sun, Jun, Chen, Junjie, Chen, Xiang.  2021.  HARS: Heuristic-Enhanced Adaptive Randomized Scheduling for Concurrency Testing. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS). :219—230.

Concurrency programs often induce buggy results due to the unexpected interaction among threads. The detection of these concurrency bugs costs a lot because they usually appear under a specific execution trace. How to virtually explore different thread schedules to detect concurrency bugs efficiently is an important research topic. Many techniques have been proposed, including lightweight techniques like adaptive randomized scheduling (ARS) and heavyweight techniques like maximal causality reduction (MCR). Compared to heavyweight techniques, ARS is efficient in exploring different schedulings and achieves state-of-the-art performance. However, it will lead to explore large numbers of redundant thread schedulings, which will reduce the efficiency. Moreover, it suffers from the “cold start” issue, when little information is available to guide the distance calculation at the beginning of the exploration. In this work, we propose a Heuristic-Enhanced Adaptive Randomized Scheduling (HARS) algorithm, which improves ARS to detect concurrency bugs guided with novel distance metrics and heuristics obtained from existing research findings. Compared with the adaptive randomized scheduling method, it can more effectively distinguish the traces that may contain concurrency bugs and avoid redundant schedules, thus exploring diverse thread schedules effectively. We conduct an evaluation on 45 concurrency Java programs. The evaluation results show that our algorithm performs more stably in terms of effectiveness and efficiency in detecting concurrency bugs. Notably, HARS detects hard-to-expose bugs more effectively, where the buggy traces are rare or the bug triggering conditions are tricky.

2020-09-28
Lv, Chengcheng, Zhang, Long, Zeng, Fanping, Zhang, Jian.  2019.  Adaptive Random Testing for XSS Vulnerability. 2019 26th Asia-Pacific Software Engineering Conference (APSEC). :63–69.
XSS is one of the common vulnerabilities in web applications. Many black-box testing tools may collect a large number of payloads and traverse them to find a payload that can be successfully injected, but they are not very efficient. And previous research has paid less attention to how to improve the efficiency of black-box testing to detect XSS vulnerability. To improve the efficiency of testing, we develop an XSS testing tool. It collects 6128 payloads and uses a headless browser to detect XSS vulnerability. The tool can discover XSS vulnerability quickly with the ART(Adaptive Random Testing) method. We conduct an experiment using 3 extensively adopted open source vulnerable benchmarks and 2 actual websites to evaluate the ART method. The experimental results indicate that the ART method can effectively improve the fuzzing method by more than 27.1% in reducing the number of attempts before accomplishing a successful injection.