Biblio
Throughout the life cycle of any technical project, the enterprise needs to assess the risks associated with its development, commissioning, operation and decommissioning. This article defines the task of researching risks in relation to the operation of a data storage subsystem in the cloud infrastructure of a geographically distributed company and the tools that are required for this. Analysts point out that, compared to 2018, in 2019 there were 3.5 times more cases of confidential information leaks from storages on unprotected (freely accessible due to incorrect configuration) servers in cloud services. The total number of compromised personal data and payment information records increased 5.4 times compared to 2018 and amounted to more than 8.35 billion records. Moreover, the share of leaks of payment information has decreased, but the percentage of leaks of personal data has grown and accounts for almost 90% of all leaks from cloud storage. On average, each unsecured service identified resulted in 33.7 million personal data records being leaked. Leaks are mainly related to misconfiguration of services and stored resources, as well as human factors. These impacts can be minimized by improving the skills of cloud storage administrators and regularly auditing storage. Despite its seeming insecurity, the cloud is a reliable way of storing data. At the same time, leaks are still occurring. According to Kaspersky Lab, every tenth (11%) data leak from the cloud became possible due to the actions of the provider, while a third of all cyber incidents in the cloud (31% in Russia and 33% in the world) were due to gullibility company employees caught up in social engineering techniques. Minimizing the risks associated with the storage of personal data is one of the main tasks when operating a company's cloud infrastructure.
In today's world, software is ubiquitous and relied upon to perform many important and critical functions. Unfortunately, software is riddled with security vulnerabilities that invite exploitation. Attackers are particularly attracted to software systems that hold sensitive data with the goal of compromising the data. For such systems, this paper proposes a modeling method applied at design time to identify and reduce the attack surface, which arises due to the locations containing sensitive data within the software system and the accessibility of those locations to attackers. The method reduces the attack surface by changing the design so that the number of such locations is reduced. The method performs these changes on a graphical model of the software system. The changes are then considered for application to the design of the actual system to improve its security.
One challenge for cybersecurity experts is deciding which type of attack would be successful against the system they wish to protect. Often, this challenge is addressed in an ad hoc fashion and is highly dependent upon the skill and knowledge base of the expert. In this study, we present a method for automatically ranking attack patterns in the Common Attack Pattern Enumeration and Classification (CAPEC) database for a given system. This ranking method is intended to produce suggested attacks to be evaluated by a cybersecurity expert and not a definitive ranking of the "best" attacks. The proposed method uses topic modeling to extract hidden topics from the textual description of each attack pattern and learn the parameters of a topic model. The posterior distribution of topics for the system is estimated using the model and any provided text. Attack patterns are ranked by measuring the distance between each attack topic distribution and the topic distribution of the system using KL divergence.
Multivariate public key cryptosystem acts as a signature system rather than encryption system due to the minus mode used in system. A multivariate encryption system with determinate equations in central map and chaotic shell protection for central map and affine map is proposed in this paper. The outputs of two-dimension chaotic system are discretized on a finite field to disturb the central map and affine map in multivariate cryptosystem. The determined equations meet the shortage of indeterminate equations in minus mode and make the general attack methods are out of tenable condition. The analysis shows the proposed multivariate symmetric encryption system based on chaotic shell is able to resist general attacks.
This scientific paper reveals an intelligent system for data acquisition for dam monitoring and diagnose. This system is built around the RS485 communication standard and uses its own communication protocol [2]. The aim of the system is to monitor all signal levels inside the communication bus, respectively to detect the out of action data loggers. The diagnose test extracts the following functional parameters: supply voltage and the absolute value and common mode value for differential signals used in data transmission (denoted with “A” and “B”). Analyzing this acquired information, it's possible to find short-circuits or open-circuits across the communication bus. The measurement and signal processing functions, for flaws, are implemented inside the system's central processing unit. The next testing step is finding the out of action data loggers and is being made by trying to communicate with every data logger inside the network. The lack of any response from a data logger is interpreted as an error and using the code of the data logger's microcontroller, it is possible to find its exact position inside the dam infrastructure. The novelty of this procedure is the fact that it completely automates the diagnose procedure, which, until now, was made visually by checking every data logger.