Visible to the public Biblio

Filters: Keyword is wind power plants  [Clear All Filters]
2020-12-02
Scheffer, V., Ipach, H., Becker, C..  2019.  Distribution Grid State Assessment for Control Reserve Provision Using Boundary Load Flow. 2019 IEEE Milan PowerTech. :1—6.

With the increasing expansion of wind and solar power plants, these technologies will also have to contribute control reserve to guarantee frequency stability within the next couple of years. In order to maintain the security of supply at the same level in the future, it must be ensured that wind and solar power plants are able to feed in electricity into the distribution grid without bottlenecks when activated. The present work presents a grid state assessment, which takes into account the special features of the control reserve supply. The identification of a future grid state, which is necessary for an ex ante evaluation, poses the challenge of forecasting loads. The Boundary Load Flow method takes load uncertainties into account and is used to estimate a possible interval for all grid parameters. Grid congestions can thus be detected preventively and suppliers of control reserve can be approved or excluded. A validation in combination with an exemplary application shows the feasibility of the overall methodology.

2020-11-20
Yogarathinam, A., Chaudhuri, N. R..  2019.  Wide-Area Damping Control Using Multiple DFIG-Based Wind Farms Under Stochastic Data Packet Dropouts. 2019 IEEE Power Energy Society General Meeting (PESGM). :1—1.
Data dropouts in communication network can have a significant impact on wide-area oscillation damping control of a smart power grid with large-scale deployment of distributed and networked phasor measurement units and wind energy resources. Remote feedback signals sent through communication channels encounter data dropout, which is represented by the Gilbert-Elliott model. An observer-driven reduced copy (ORC) approach is presented, which uses the knowledge of the nominal system dynamics during data dropouts to improve the damping performance where conventional feedback would suffer. An expression for the expectation of the bound on the error norm between the actual and the estimated states relating uncertainties in the cyber system due to data dropout and physical system due to change in operating conditions is also derived. The key contribution comes from the analytical derivation of the impact of coupling between the cyber and the physical layer on ORC performance. Monte Carlo simulation is performed to calculate the dispersion of the error bound. Nonlinear time-domain simulations demonstrate that the ORC produces significantly better performance compared to conventional feedback under higher data drop situations.
2020-01-20
Melendez, Carlos, Diaz, Matias, Rojas, Felix, Cardenas, Roberto, Espinoza, Mauricio.  2019.  Control of a Double Fed Induction Generator based Wind Energy Conversion System equipped with a Modular Multilevel Matrix Converter. 2019 Fourteenth International Conference on Ecological Vehicles and Renewable Energies (EVER). :1–11.

During the last years, the Modular Multilevel Matrix Converter (M3C) has been investigated due to its capacity tooperate in high voltage and power levels. This converter is appropriate for Wind Energy Conversion Systems (WECSs), due to its advantages such as redundancy, high power quality, expandability and control flexibility. For Double-Fed Induction Generator (DFIG) WECSs, the M3C has advantages additional benefits, for instance, high power density in the rotor, with a more compact modular converter, and control of bidirectional reactive power flow. Therefore, this paper presents a WECS composed of a DFIG and an M3C. The modelling and control of this WECS topology are described and analyzed in this paper. Additionally, simulation results are presented to validate the effectiveness of this proposal.

2019-07-01
Zabetian-Hosseini, A., Mehrizi-Sani, A., Liu, C..  2018.  Cyberattack to Cyber-Physical Model of Wind Farm SCADA. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. :4929–4934.

In recent years, there has been a significant increase in wind power penetration into the power system. As a result, the behavior of the power system has become more dependent on wind power behavior. Supervisory control and data acquisition (SCADA) systems responsible for monitoring and controlling wind farms often have vulnerabilities that make them susceptible to cyberattacks. These vulnerabilities allow attackers to exploit and intrude in the wind farm SCADA system. In this paper, a cyber-physical system (CPS) model for the information and communication technology (ICT) model of the wind farm SCADA system integrated with SCADA of the power system is proposed. Cybersecurity of this wind farm SCADA system is discussed. Proposed cyberattack scenarios on the system are modeled and the impact of these cyberattacks on the behavior of the power systems on the IEEE 9-bus modified system is investigated. Finally, an anomaly attack detection algorithm is proposed to stop the attack of tripping of all wind farms. Case studies validate the performance of the proposed CPS model of the test system and the attack detection algorithm.

2017-03-08
Wang, J., Zhou, Y..  2015.  Multi-objective dynamic unit commitment optimization for energy-saving and emission reduction with wind power. 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). :2074–2078.

As a clean energy, wind power is massively utilized in net recent years, which significantly reduced the pollution emission created from unit. This article referred to the concept of energy-saving and emission reducing; built a multiple objective function with represent of the emission of CO2& SO2, the coal-fired from units and the lowest unit fees of commitment; Proposed a algorithm to improving NSGA-D (Non-dominated Sorting Genetic Algorithm-II) for the dynamic characteristics, consider of some constraint conditions such as the shortest operation and fault time and climbing etc.; Optimized and commitment discrete magnitude and Load distribution continuous quantity with the double-optimization strategy; Introduced the fuzzy satisfaction-maximizing method to reaching a decision for Pareto solution and also nested into each dynamic solution; Through simulation for 10 units of wind power, the result show that this method is an effective way to optimize the Multi-objective unit commitment modeling in wind power integrated system with Mixed-integer variable.

2017-02-27
Gonzalez-Longatt, F., Carmona-Delgado, C., Riquelme, J., Burgos, M., Rueda, J. L..  2015.  Risk-based DC security assessment for future DC-independent system operator. 2015 International Conference on Energy Economics and Environment (ICEEE). :1–8.

The use of multi-terminal HVDC to integrate wind power coming from the North Sea opens de door for a new transmission system model, the DC-Independent System Operator (DC-ISO). DC-ISO will face highly stressed and varying conditions that requires new risk assessment tools to ensure security of supply. This paper proposes a novel risk-based static security assessment methodology named risk-based DC security assessment (RB-DCSA). It combines a probabilistic approach to include uncertainties and a fuzzy inference system to quantify the systemic and individual component risk associated with operational scenarios considering uncertainties. The proposed methodology is illustrated using a multi-terminal HVDC system where the variability of wind speed at the offshore wind is included.

2015-05-05
Popli, N., Ilic, M.D..  2014.  Storage devices for automated frequency regulation and stabilization. PES General Meeting | Conference Exposition, 2014 IEEE. :1-5.

In this paper we propose a framework for automating feedback control to balance hard-to-predict wind power variations. The power imbalance is a result of non-zero mean error around the wind power forecast. Our proposed framework is aimed at achieving the objective of frequency stabilization and regulation through one control action. A case-study for a real-world system on Flores island in Portugal is provided. Using a battery-based storage on the island, we illustrate the proposed control framework.