Visible to the public Biblio

Filters: Keyword is TCP/IP protocol  [Clear All Filters]
2021-03-29
Liu, W., Niu, H., Luo, W., Deng, W., Wu, H., Dai, S., Qiao, Z., Feng, W..  2020.  Research on Technology of Embedded System Security Protection Component. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :21—27.

With the development of the Internet of Things (IoT), it has been widely deployed. As many embedded devices are connected to the network and massive amounts of security-sensitive data are stored in these devices, embedded devices in IoT have become the target of attackers. The trusted computing is a key technology to guarantee the security and trustworthiness of devices' execution environment. This paper focuses on security problems on IoT devices, and proposes a security architecture for IoT devices based on the trusted computing technology. This paper implements a security management system for IoT devices, which can perform integrity measurement, real-time monitoring and security management for embedded applications, providing a safe and reliable execution environment and whitelist-based security protection for IoT devices. This paper also designs and implements an embedded security protection system based on trusted computing technology, containing a measurement and control component in the kernel and a remote graphical management interface for administrators. The kernel layer enforces the integrity measurement and control of the embedded application on the device. The graphical management interface communicates with the remote embedded device through the TCP/IP protocol, and provides a feature-rich and user-friendly interaction interface. It implements functions such as knowledge base scanning, whitelist management, log management, security policy management, and cryptographic algorithm performance testing.

2020-10-05
Xue, Baoze, Shen, Pubing, Wu, Bo, Wang, Xiaoting, Chen, Shuwen.  2019.  Research on Security Protection of Network Based on Address Layout Randomization from the Perspective of Attackers. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :1475–1478.
At present, the network architecture is based on the TCP/IP protocol and node communications are achieved by the IP address and identifier of the node. The IP address in the network remains basically unchanged, so it is more likely to be attacked by network intruder. To this end, it is important to make periodic dynamic hopping in a specific address space possible, so that an intruder fails to obtain the internal network address and grid topological structure in real time and to continue to perform infiltration by the building of a new address space layout randomization system on the basis of SDN from the perspective of an attacker.