Biblio
Filters: Keyword is convolutional layers [Clear All Filters]
Hybrid Deep Neural Networks to Infer State Models of Black-Box Systems. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :299–311.
.
2020. Inferring behavior model of a running software system is quite useful for several automated software engineering tasks, such as program comprehension, anomaly detection, and testing. Most existing dynamic model inference techniques are white-box, i.e., they require source code to be instrumented to get run-time traces. However, in many systems, instrumenting the entire source code is not possible (e.g., when using black-box third-party libraries) or might be very costly. Unfortunately, most black-box techniques that detect states over time are either univariate, or make assumptions on the data distribution, or have limited power for learning over a long period of past behavior. To overcome the above issues, in this paper, we propose a hybrid deep neural network that accepts as input a set of time series, one per input/output signal of the system, and applies a set of convolutional and recurrent layers to learn the non-linear correlations between signals and the patterns, over time. We have applied our approach on a real UAV auto-pilot solution from our industry partner with half a million lines of C code. We ran 888 random recent system-level test cases and inferred states, over time. Our comparison with several traditional time series change point detection techniques showed that our approach improves their performance by up to 102%, in terms of finding state change points, measured by F1 score. We also showed that our state classification algorithm provides on average 90.45% F1 score, which improves traditional classification algorithms by up to 17%.
On the Geometry of Rectifier Convolutional Neural Networks. 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). :793—797.
.
2019. While recent studies have shed light on the expressivity, complexity and compositionality of convolutional networks, the real inductive bias of the family of functions reachable by gradient descent on natural data is still unknown. By exploiting symmetries in the preactivation space of convolutional layers, we present preliminary empirical evidence of regularities in the preimage of trained rectifier networks, in terms of arrangements of polytopes, and relate it to the nonlinear transformations applied by the network to its input.