Visible to the public Biblio

Filters: Keyword is trust metrics  [Clear All Filters]
2021-06-01
Zheng, Yang, Chunlin, Yin, Zhengyun, Fang, Na, Zhao.  2020.  Trust Chain Model and Credibility Analysis in Software Systems. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :153–156.
The credibility of software systems is an important indicator in measuring the performance of software systems. Effective analysis of the credibility of systems is a controversial topic in the research of trusted software. In this paper, the trusted boot and integrity metrics of a software system are analyzed. The different trust chain models, chain and star, are obtained by using different methods for credibility detection of functional modules in the system operation. Finally, based on the operation of the system, trust and failure relation graphs are established to analyze and measure the credibility of the system.
2020-10-05
Ahmed, Abdelmuttlib Ibrahim Abdalla, Khan, Suleman, Gani, Abdullah, Hamid, Siti Hafizah Ab, Guizani, Mohsen.  2018.  Entropy-based Fuzzy AHP Model for Trustworthy Service Provider Selection in Internet of Things. 2018 IEEE 43rd Conference on Local Computer Networks (LCN). :606—613.

Nowadays, trust and reputation models are used to build a wide range of trust-based security mechanisms and trust-based service management applications on the Internet of Things (IoT). Considering trust as a single unit can result in missing important and significant factors. We split trust into its building-blocks, then we sort and assign weight to these building-blocks (trust metrics) on the basis of its priorities for the transaction context of a particular goal. To perform these processes, we consider trust as a multi-criteria decision-making problem, where a set of trust worthiness metrics represent the decision criteria. We introduce Entropy-based fuzzy analytic hierarchy process (EFAHP) as a trust model for selecting a trustworthy service provider, since the sense of decision making regarding multi-metrics trust is structural. EFAHP gives 1) fuzziness, which fits the vagueness, uncertainty, and subjectivity of trust attributes; 2) AHP, which is a systematic way for making decisions in complex multi-criteria decision making; and 3) entropy concept, which is utilized to calculate the aggregate weights for each service provider. We present a numerical illustration in trust-based Service Oriented Architecture in the IoT (SOA-IoT) to demonstrate the service provider selection using the EFAHP Model in assessing and aggregating the trust scores.