Visible to the public Biblio

Filters: Keyword is communication graph  [Clear All Filters]
2021-02-16
Poudel, S., Sun, H., Nikovski, D., Zhang, J..  2020.  Distributed Average Consensus Algorithm for Damage Assessment of Power Distribution System. 2020 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1—5.
In this paper, we propose a novel method to obtain the damage model (connectivity) of a power distribution system (PDS) based on distributed consensus algorithm. The measurement and sensing units in the distribution network are modeled as an agent with limited communication capability that exchanges the information (switch status) to reach an agreement in a consensus algorithm. Besides, a communication graph is designed for agents to run the consensus algorithm which is efficient and robust during the disaster event. Agents can dynamically communicate with the other agent based on available links that are established and solve the distributed consensus algorithm quickly to come up with the correct topology of PDS. Numerical simulations are performed to demonstrate the effectiveness of the proposed approach with the help of an IEEE 123-node test case with 3 different sub-graphs.
2020-10-06
Ramachandran, Ragesh K., Preiss, James A., Sukhatme, Gaurav S..  2019.  Resilience by Reconfiguration: Exploiting Heterogeneity in Robot Teams. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :6518—6525.

We propose a method to maintain high resource availability in a networked heterogeneous multi-robot system subject to resource failures. In our model, resources such as sensing and computation are available on robots. The robots are engaged in a joint task using these pooled resources. When a resource on a particular robot becomes unavailable (e.g., a sensor ceases to function), the system automatically reconfigures so that the robot continues to have access to this resource by communicating with other robots. Specifically, we consider the problem of selecting edges to be modified in the system's communication graph after a resource failure has occurred. We define a metric that allows us to characterize the quality of the resource distribution in the network represented by the communication graph. Upon a resource becoming unavailable due to failure, we reconFigure the network so that the resource distribution is brought as close to the maximal resource distribution as possible without a large change in the number of active inter-robot communication links. Our approach uses mixed integer semi-definite programming to achieve this goal. We employ a simulated annealing method to compute a spatial formation that satisfies the inter-robot distances imposed by the topology, along with other constraints. Our method can compute a communication topology, spatial formation, and formation change motion planning in a few seconds. We validate our method in simulation and real-robot experiments with a team of seven quadrotors.