Visible to the public Biblio

Filters: Keyword is edge computing security  [Clear All Filters]
2023-07-10
Zhao, Zhihui, Zeng, Yicheng, Wang, Jinfa, Li, Hong, Zhu, Hongsong, Sun, Limin.  2022.  Detection and Incentive: A Tampering Detection Mechanism for Object Detection in Edge Computing. 2022 41st International Symposium on Reliable Distributed Systems (SRDS). :166—177.
The object detection tasks based on edge computing have received great attention. A common concern hasn't been addressed is that edge may be unreliable and uploads the incorrect data to cloud. Existing works focus on the consistency of the transmitted data by edge. However, in cases when the inputs and the outputs are inherently different, the authenticity of data processing has not been addressed. In this paper, we first simply model the tampering detection. Then, bases on the feature insertion and game theory, the tampering detection and economic incentives mechanism (TDEI) is proposed. In tampering detection, terminal negotiates a set of features with cloud and inserts them into the raw data, after the cloud determines whether the results from edge contain the relevant information. The honesty incentives employs game theory to instill the distrust among different edges, preventing them from colluding and thwarting the tampering detection. Meanwhile, the subjectivity of nodes is also considered. TDEI distributes the tampering detection to all edges and realizes the self-detection of edge results. Experimental results based on the KITTI dataset, show that the accuracy of detection is 95% and 80%, when terminal's additional overhead is smaller than 30% for image and 20% for video, respectively. The interference ratios of TDEI to raw data are about 16% for video and 0% for image, respectively. Finally, we discuss the advantage and scalability of TDEI.
2022-08-26
Casola, Valentina, Benedictis, Alessandra De, Mazzocca, Carlo, Montanari, Rebecca.  2021.  Toward Automated Threat Modeling of Edge Computing Systems. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :135—140.

Edge computing brings processing and storage capabilities closer to the data sources, to reduce network latency, save bandwidth, and preserve data locality. Despite the clear benefits, this paradigm brings unprecedented cyber risks due to the combination of the security issues and challenges typical of cloud and Internet of Things (IoT) worlds. Notwithstanding an increasing interest in edge security by academic and industrial communities, there is still no discernible industry consensus on edge computing security best practices, and activities like threat analysis and countermeasure selection are still not well established and are completely left to security experts.In order to cope with the need for a simplified yet effective threat modeling process, which is affordable in presence of limited security skills and economic resources, and viable in modern development approaches, in this paper, we propose an automated threat modeling and countermeasure selection strategy targeting edge computing systems. Our approach leverages a comprehensive system model able to describe the main involved architectural elements and the associated data flow, with a focus on the specific properties that may actually impact on the applicability of threats and of associated countermeasures.

2020-10-06
Godquin, Tanguy, Barbier, Morgan, Gaber, Chrystel, Grimault, Jean-Luc, Bars, Jean-Marie Le.  2019.  Placement optimization of IoT security solutions for edge computing based on graph theory. 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC). :1—7.

In this paper, we propose a new method for optimizing the deployment of security solutions within an IoT network. Our approach uses dominating sets and centrality metrics to propose an IoT security framework where security functions are optimally deployed among devices. An example of such a solution is presented based on EndToEnd like encryption. The results reveal overall increased security within the network with minimal impact on the traffic.