Visible to the public Biblio

Filters: Keyword is IT infrastructure  [Clear All Filters]
2020-05-08
Dionísio, Nuno, Alves, Fernando, Ferreira, Pedro M., Bessani, Alysson.  2019.  Cyberthreat Detection from Twitter using Deep Neural Networks. 2019 International Joint Conference on Neural Networks (IJCNN). :1—8.

To be prepared against cyberattacks, most organizations resort to security information and event management systems to monitor their infrastructures. These systems depend on the timeliness and relevance of the latest updates, patches and threats provided by cyberthreat intelligence feeds. Open source intelligence platforms, namely social media networks such as Twitter, are capable of aggregating a vast amount of cybersecurity-related sources. To process such information streams, we require scalable and efficient tools capable of identifying and summarizing relevant information for specified assets. This paper presents the processing pipeline of a novel tool that uses deep neural networks to process cybersecurity information received from Twitter. A convolutional neural network identifies tweets containing security-related information relevant to assets in an IT infrastructure. Then, a bidirectional long short-term memory network extracts named entities from these tweets to form a security alert or to fill an indicator of compromise. The proposed pipeline achieves an average 94% true positive rate and 91% true negative rate for the classification task and an average F1-score of 92% for the named entity recognition task, across three case study infrastructures.

2019-03-04
Kannavara, R., Vangore, J., Roberts, W., Lindholm, M., Shrivastav, P..  2018.  Automating Threat Intelligence for SDL. 2018 IEEE Cybersecurity Development (SecDev). :137–137.
Threat intelligence is very important in order to execute a well-informed Security Development Lifecycle (SDL). Although there are many readily available solutions supporting tactical threat intelligence focusing on enterprise Information Technology (IT) infrastructure, the lack of threat intelligence solutions focusing on SDL is a known gap which is acknowledged by the security community. To address this shortcoming, we present a solution to automate the process of mining open source threat information sources to deliver product specific threat indicators designed to strategically inform the SDL while continuously monitoring for disclosures of relevant potential vulnerabilities during product design, development, and beyond deployment.
2018-12-10
Kumar, S., Singh, C. Bhim Bhan.  2018.  A Zero-Day Resistant Malware Detection Method for Securing Cloud Using SVM and Sandboxing Techniques. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :1397–1402.

Cloud nowaday has become the backbone of the IT infrastructure. Whole of the infrastructure is now being shifted to the clouds, and as the cloud involves all of the networking schemes and the OS images, it inherits all of the vulnerabilities too. And hence securing them is one of our very prior concerns. Malwares are one of the many other problems that have ever growing and hence need to be eradicated from the system. The history of mal wares go long back in time since the advent of computers and hence a lot of techniques has also been already devised to tackle with the problem in some or other way. But most of them fall short in some or other way or are just too heavy to execute on a simple user machine. Our approach devises a 3 - phase exhaustive technique which confirms the detection of any kind of malwares from the host. It also works for the zero-day attacks that are really difficult to cover most times and can be of really high-risk at times. We have thought of a solution to keep the things light weight for the user.

2018-02-14
Naik, N., Jenkins, P..  2017.  Securing digital identities in the cloud by selecting an apposite Federated Identity Management from SAML, OAuth and OpenID Connect. 2017 11th International Conference on Research Challenges in Information Science (RCIS). :163–174.
Access to computer systems and the information held on them, be it commercially or personally sensitive, is naturally, strictly controlled by both legal and technical security measures. One such method is digital identity, which is used to authenticate and authorize users to provide access to IT infrastructure to perform official, financial or sensitive operations within organisations. However, transmitting and sharing this sensitive information with other organisations over insecure channels always poses a significant security and privacy risk. An example of an effective solution to this problem is the Federated Identity Management (FIdM) standard adopted in the cloud environment. The FIdM standard is used to authenticate and authorize users across multiple organisations to obtain access to their networks and resources without transmitting sensitive information to other organisations. Using the same authentication and authorization details among multiple organisations in one federated group, it protects the identities and credentials of users in the group. This protection is a balance, mitigating security risk whilst maintaining a positive experience for users. Three of the most popular FIdM standards are Security Assertion Markup Language (SAML), Open Authentication (OAuth), and OpenID Connect (OIDC). This paper presents an assessment of these standards considering their architectural design, working, security strength and security vulnerability, to cognise and ascertain effective usages to protect digital identities and credentials. Firstly, it explains the architectural design and working of these standards. Secondly, it proposes several assessment criteria and compares functionalities of these standards based on the proposed criteria. Finally, it presents a comprehensive analysis of their security vulnerabilities to aid in selecting an apposite FIdM. This analysis of security vulnerabilities is of great significance because their improper or erroneous deployme- t may be exploited for attacks.
2015-05-05
Miloslavskaya, N., Senatorov, M., Tolstoy, A., Zapechnikov, S..  2014.  Information Security Maintenance Issues for Big Security-Related Data. Future Internet of Things and Cloud (FiCloud), 2014 International Conference on. :361-366.

The need to protect big data, particularly those relating to information security (IS) maintenance (ISM) of an enterprise's IT infrastructure, is shown. A worldwide experience of addressing big data ISM issues is briefly summarized and a big data protection problem statement is formulated. An infrastructure for big data ISM is proposed. New applications areas for big data IT after addressing ISM issues are listed in conclusion.