Visible to the public Biblio

Filters: Keyword is Data visualization  [Clear All Filters]
2014
Stanisavljevic, Z., Stanisavljevic, J., Vuletic, P., Jovanovic, Z..  2014.  COALA - System for Visual Representation of Cryptography Algorithms. Learning Technologies, IEEE Transactions on. 7:178-190.

Educational software systems have an increasingly significant presence in engineering sciences. They aim to improve students' attitudes and knowledge acquisition typically through visual representation and simulation of complex algorithms and mechanisms or hardware systems that are often not available to the educational institutions. This paper presents a novel software system for CryptOgraphic ALgorithm visuAl representation (COALA), which was developed to support a Data Security course at the School of Electrical Engineering, University of Belgrade. The system allows users to follow the execution of several complex algorithms (DES, AES, RSA, and Diffie-Hellman) on real world examples in a step by step detailed view with the possibility of forward and backward navigation. Benefits of the COALA system for students are observed through the increase of the percentage of students who passed the exam and the average grade on the exams during one school year.
 

Khobragade, P.K., Malik, L.G..  2014.  Data Generation and Analysis for Digital Forensic Application Using Data Mining. Communication Systems and Network Technologies (CSNT), 2014 Fourth International Conference on. :458-462.

In the cyber crime huge log data, transactional data occurs which tends to plenty of data for storage and analyze them. It is difficult for forensic investigators to play plenty of time to find out clue and analyze those data. In network forensic analysis involves network traces and detection of attacks. The trace involves an Intrusion Detection System and firewall logs, logs generated by network services and applications, packet captures by sniffers. In network lots of data is generated in every event of action, so it is difficult for forensic investigators to find out clue and analyzing those data. In network forensics is deals with analysis, monitoring, capturing, recording, and analysis of network traffic for detecting intrusions and investigating them. This paper focuses on data collection from the cyber system and web browser. The FTK 4.0 is discussing for memory forensic analysis and remote system forensic which is to be used as evidence for aiding investigation.
 

Miloslavskaya, N., Senatorov, M., Tolstoy, A., Zapechnikov, S..  2014.  Information Security Maintenance Issues for Big Security-Related Data. Future Internet of Things and Cloud (FiCloud), 2014 International Conference on. :361-366.

The need to protect big data, particularly those relating to information security (IS) maintenance (ISM) of an enterprise's IT infrastructure, is shown. A worldwide experience of addressing big data ISM issues is briefly summarized and a big data protection problem statement is formulated. An infrastructure for big data ISM is proposed. New applications areas for big data IT after addressing ISM issues are listed in conclusion.
 

Dey, L., Mahajan, D., Gupta, H..  2014.  Obtaining Technology Insights from Large and Heterogeneous Document Collections. Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2014 IEEE/WIC/ACM International Joint Conferences on. 1:102-109.

Keeping up with rapid advances in research in various fields of Engineering and Technology is a challenging task. Decision makers including academics, program managers, venture capital investors, industry leaders and funding agencies not only need to be abreast of latest developments but also be able to assess the effect of growth in certain areas on their core business. Though analyst agencies like Gartner, McKinsey etc. Provide such reports for some areas, thought leaders of all organisations still need to amass data from heterogeneous collections like research publications, analyst reports, patent applications, competitor information etc. To help them finalize their own strategies. Text mining and data analytics researchers have been looking at integrating statistics, text analytics and information visualization to aid the process of retrieval and analytics. In this paper, we present our work on automated topical analysis and insight generation from large heterogeneous text collections of publications and patents. While most of the earlier work in this area provides search-based platforms, ours is an integrated platform for search and analysis. We have presented several methods and techniques that help in analysis and better comprehension of search results. We have also presented methods for generating insights about emerging and popular trends in research along with contextual differences between academic research and patenting profiles. We also present novel techniques to present topic evolution that helps users understand how a particular area has evolved over time.
 

Conglei Shi, Yingcai Wu, Shixia Liu, Hong Zhou, Huamin Qu.  2014.  LoyalTracker: Visualizing Loyalty Dynamics in Search Engines. Visualization and Computer Graphics, IEEE Transactions on. 20:1733-1742.

The huge amount of user log data collected by search engine providers creates new opportunities to understand user loyalty and defection behavior at an unprecedented scale. However, this also poses a great challenge to analyze the behavior and glean insights into the complex, large data. In this paper, we introduce LoyalTracker, a visual analytics system to track user loyalty and switching behavior towards multiple search engines from the vast amount of user log data. We propose a new interactive visualization technique (flow view) based on a flow metaphor, which conveys a proper visual summary of the dynamics of user loyalty of thousands of users over time. Two other visualization techniques, a density map and a word cloud, are integrated to enable analysts to gain further insights into the patterns identified by the flow view. Case studies and the interview with domain experts are conducted to demonstrate the usefulness of our technique in understanding user loyalty and switching behavior in search engines.
 

Koch, S., John, M., Worner, M., Muller, A., Ertl, T..  2014.  VarifocalReader #x2014; In-Depth Visual Analysis of Large Text Documents. Visualization and Computer Graphics, IEEE Transactions on. 20:1723-1732.

Interactive visualization provides valuable support for exploring, analyzing, and understanding textual documents. Certain tasks, however, require that insights derived from visual abstractions are verified by a human expert perusing the source text. So far, this problem is typically solved by offering overview-detail techniques, which present different views with different levels of abstractions. This often leads to problems with visual continuity. Focus-context techniques, on the other hand, succeed in accentuating interesting subsections of large text documents but are normally not suited for integrating visual abstractions. With VarifocalReader we present a technique that helps to solve some of these approaches' problems by combining characteristics from both. In particular, our method simplifies working with large and potentially complex text documents by simultaneously offering abstract representations of varying detail, based on the inherent structure of the document, and access to the text itself. In addition, VarifocalReader supports intra-document exploration through advanced navigation concepts and facilitates visual analysis tasks. The approach enables users to apply machine learning techniques and search mechanisms as well as to assess and adapt these techniques. This helps to extract entities, concepts and other artifacts from texts. In combination with the automatic generation of intermediate text levels through topic segmentation for thematic orientation, users can test hypotheses or develop interesting new research questions. To illustrate the advantages of our approach, we provide usage examples from literature studies.

Craig, P., Roa Seiler, N., Olvera Cervantes, A.D..  2014.  Animated Geo-temporal Clusters for Exploratory Search in Event Data Document Collections. Information Visualisation (IV), 2014 18th International Conference on. :157-163.

This paper presents a novel visual analytics technique developed to support exploratory search tasks for event data document collections. The technique supports discovery and exploration by clustering results and overlaying cluster summaries onto coordinated timeline and map views. Users can also explore and interact with search results by selecting clusters to filter and re-cluster the data with animation used to smooth the transition between views. The technique demonstrates a number of advantages over alternative methods for displaying and exploring geo-referenced search results and spatio-temporal data. Firstly, cluster summaries can be presented in a manner that makes them easy to read and scan. Listing representative events from each cluster also helps the process of discovery by preserving the diversity of results. Also, clicking on visual representations of geo-temporal clusters provides a quick and intuitive way to navigate across space and time simultaneously. This removes the need to overload users with the display of too many event labels at any one time. The technique was evaluated with a group of nineteen users and compared with an equivalent text based exploratory search engine.
 

Eddeen, L.M.H.N., Saleh, E.M., Saadah, D..  2014.  Genetic Hash Algorithm. Computer Science and Information Technology (CSIT), 2014 6th International Conference on. :23-26.

Security is becoming a major concern in computing. New techniques are evolving every day; one of these techniques is Hash Visualization. Hash Visualization uses complex random generated images for security, these images can be used to hide data (watermarking). This proposed new technique improves hash visualization by using genetic algorithms. Genetic algorithms are a search optimization technique that is based on the evolution of living creatures. The proposed technique uses genetic algorithms to improve hash visualization. The used genetic algorithm was away faster than traditional previous ones, and it improved hash visualization by evolving the tree that was used to generate the images, in order to obtain a better and larger tree that will generate images with higher security. The security was satisfied by calculating the fitness value for each chromosome based on a specifically designed algorithm.
 

Sumec, S..  2014.  Software tool for verification of sampled values transmitted via IEC 61850-9-2 protocol. Electric Power Engineering (EPE), Proccedings of the 2014 15th International Scientific Conference on. :113-117.

Nowadays is increasingly used process bus for communication of equipments in substations. In addition to signaling various statuses of device using GOOSE messages it is possible to transmit measured values, which can be used for diagnostic of system or other advanced functions. Transmission of such values via Ethernet is well defined in protocol IEC 61850-9-2. Paper introduces a tool designed for verification of sampled values generated by various devices using this protocol.
 

2015
Stoll, J., Bengez, R. Z..  2015.  Visual structures for seeing cyber policy strategies. 2015 7th International Conference on Cyber Conflict: Architectures in Cyberspace. :135–152.

In the pursuit of cyber security for organizations, there are tens of thousands of tools, guidelines, best practices, forensics, platforms, toolkits, diagnostics, and analytics available. However according to the Verizon 2014 Data Breach Report: “after analysing 10 years of data... organizations cannot keep up with cyber crime-and the bad guys are winning.” Although billions are expended worldwide on cyber security, organizations struggle with complexity, e.g., the NISTIR 7628 guidelines for cyber-physical systems are over 600 pages of text. And there is a lack of information visibility. Organizations must bridge the gap between technical cyber operations and the business/social priorities since both sides are essential for ensuring cyber security. Identifying visual structures for information synthesis could help reduce the complexity while increasing information visibility within organizations. This paper lays the foundation for investigating such visual structures by first identifying where current visual structures are succeeding or failing. To do this, we examined publicly available analyses related to three types of security issues: 1) epidemic, 2) cyber attacks on an industrial network, and 3) threat of terrorist attack. We found that existing visual structures are largely inadequate for reducing complexity and improving information visibility. However, based on our analysis, we identified a range of different visual structures, and their possible trade-offs/limitation is framing strategies for cyber policy. These structures form the basis of evolving visualization to support information synthesis for policy actions, which has rarely been done but is promising based on the efficacy of existing visualizations for cyber incident detection, attacks, and situation awareness.

Hu, Zhiyong, Baynard, C. W., Hu, Hongda, Fazio, M..  2015.  GIS mapping and spatial analysis of cybersecurity attacks on a florida university. 2015 23rd International Conference on Geoinformatics. :1–5.

As the centers of knowledge, discovery, and intellectual exploration, US universities provide appealing cybersecurity targets. Cyberattack origin patterns and relationships are not evident until data is visualized in maps and tested with statistical models. The current cybersecurity threat detection software utilized by University of North Florida's IT department records large amounts of attacks and attempted intrusions by the minute. This paper presents GIS mapping and spatial analysis of cybersecurity attacks on UNF. First, locations of cyberattack origins were detected by geographic Internet Protocol (GEO-IP) software. Second, GIS was used to map the cyberattack origin locations. Third, we used advanced spatial statistical analysis functions (exploratory spatial data analysis and spatial point pattern analysis) and R software to explore cyberattack patterns. The spatial perspective we promote is novel because there are few studies employing location analytics and spatial statistics in cyber-attack detection and prevention research.

B. C. M. Cappers, J. J. van Wijk.  2015.  "SNAPS: Semantic network traffic analysis through projection and selection". 2015 IEEE Symposium on Visualization for Cyber Security (VizSec). :1-8.

Most network traffic analysis applications are designed to discover malicious activity by only relying on high-level flow-based message properties. However, to detect security breaches that are specifically designed to target one network (e.g., Advanced Persistent Threats), deep packet inspection and anomaly detection are indispensible. In this paper, we focus on how we can support experts in discovering whether anomalies at message level imply a security risk at network level. In SNAPS (Semantic Network traffic Analysis through Projection and Selection), we provide a bottom-up pixel-oriented approach for network traffic analysis where the expert starts with low-level anomalies and iteratively gains insight in higher level events through the creation of multiple selections of interest in parallel. The tight integration between visualization and machine learning enables the expert to iteratively refine anomaly scores, making the approach suitable for both post-traffic analysis and online monitoring tasks. To illustrate the effectiveness of this approach, we present example explorations on two real-world data sets for the detection and understanding of potential Advanced Persistent Threats in progress.

Cordero, C. G., Vasilomanolakis, E., Milanov, N., Koch, C., Hausheer, D., Mühlhäuser, M..  2015.  ID2T: A DIY dataset creation toolkit for Intrusion Detection Systems. 2015 IEEE Conference on Communications and Network Security (CNS). :739–740.

Intrusion Detection Systems (IDSs) are an important defense tool against the sophisticated and ever-growing network attacks. These systems need to be evaluated against high quality datasets for correctly assessing their usefulness and comparing their performance. We present an Intrusion Detection Dataset Toolkit (ID2T) for the creation of labeled datasets containing user defined synthetic attacks. The architecture of the toolkit is provided for examination and the example of an injected attack, in real network traffic, is visualized and analyzed. We further discuss the ability of the toolkit of creating realistic synthetic attacks of high quality and low bias.

2017
Bardia, Vivek, Kumar, CRS.  2017.  End Users Can Mitigate Zero Day Attacks Faster. 2017 IEEE 7th International Advance Computing Conference (IACC). :935—938.
The past decade has shown us the power of cyber space and we getting dependent on the same. The exponential evolution in the domain has attracted attackers and defenders of technology equally. This inevitable domain has led to the increase in average human awareness and knowledge too. As we see the attack sophistication grow the protectors have always been a step ahead mitigating the attacks. A study of the various Threat Detection, Protection and Mitigation Systems revealed to us a common similarity wherein users have been totally ignored or the systems rely heavily on the user inputs for its correct functioning. Compiling the above we designed a study wherein user inputs were taken in addition to independent Detection and Prevention systems to identify and mitigate the risks. This approach led us to a conclusion that involvement of users exponentially enhances machine learning and segments the data sets faster for a more reliable output.
Bardia, Vivek, Kumar, C.R.S..  2017.  Process trees amp; service chains can serve us to mitigate zero day attacks better. 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI). :280–284.
With technology at our fingertips waiting to be exploited, the past decade saw the revolutionizing Human Computer Interactions. The ease with which a user could interact was the Unique Selling Proposition (USP) of a sales team. Human Computer Interactions have many underlying parameters like Data Visualization and Presentation as some to deal with. With the race, on for better and faster presentations, evolved many frameworks to be widely used by all software developers. As the need grew for user friendly applications, more and more software professionals were lured into the front-end sophistication domain. Application frameworks have evolved to such an extent that with just a few clicks and feeding values as per requirements we are able to produce a commercially usable application in a few minutes. These frameworks generate quantum lines of codes in minutes which leaves a contrail of bugs to be discovered in the future. We have also succumbed to the benchmarking in Software Quality Metrics and have made ourselves comfortable with buggy software's to be rectified in future. The exponential evolution in the cyber domain has also attracted attackers equally. Average human awareness and knowledge has also improved in the cyber domain due to the prolonged exposure to technology for over three decades. As the attack sophistication grows and zero day attacks become more popular than ever, the suffering end users only receive remedial measures in spite of the latest Antivirus, Intrusion Detection and Protection Systems installed. We designed a software to display the complete services and applications running in users Operating System in the easiest perceivable manner aided by Computer Graphics and Data Visualization techniques. We further designed a study by empowering the fence sitter users with tools to actively participate in protecting themselves from threats. The designed threats had impressions from the complete threat canvas in some form or other restricted to systems functioning. Network threats and any sort of packet transfer to and from the system in form of threat was kept out of the scope of this experiment. We discovered that end users had a good idea of their working environment which can be used exponentially enhances machine learning for zero day threats and segment the unmarked the vast threat landscape faster for a more reliable output.
Bardia, Vivek, Kumar, C.R.S..  2017.  Process trees & service chains can serve us to mitigate zero day attacks better. 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI). :280—284.
With technology at our fingertips waiting to be exploited, the past decade saw the revolutionizing Human Computer Interactions. The ease with which a user could interact was the Unique Selling Proposition (USP) of a sales team. Human Computer Interactions have many underlying parameters like Data Visualization and Presentation as some to deal with. With the race, on for better and faster presentations, evolved many frameworks to be widely used by all software developers. As the need grew for user friendly applications, more and more software professionals were lured into the front-end sophistication domain. Application frameworks have evolved to such an extent that with just a few clicks and feeding values as per requirements we are able to produce a commercially usable application in a few minutes. These frameworks generate quantum lines of codes in minutes which leaves a contrail of bugs to be discovered in the future. We have also succumbed to the benchmarking in Software Quality Metrics and have made ourselves comfortable with buggy software's to be rectified in future. The exponential evolution in the cyber domain has also attracted attackers equally. Average human awareness and knowledge has also improved in the cyber domain due to the prolonged exposure to technology for over three decades. As the attack sophistication grows and zero day attacks become more popular than ever, the suffering end users only receive remedial measures in spite of the latest Antivirus, Intrusion Detection and Protection Systems installed. We designed a software to display the complete services and applications running in users Operating System in the easiest perceivable manner aided by Computer Graphics and Data Visualization techniques. We further designed a study by empowering the fence sitter users with tools to actively participate in protecting themselves from threats. The designed threats had impressions from the complete threat canvas in some form or other restricted to systems functioning. Network threats and any sort of packet transfer to and from the system in form of threat was kept out of the scope of this experiment. We discovered that end users had a good idea of their working environment which can be used exponentially enhances machine learning for zero day threats and segment the unmarked the vast threat landscape faster for a more reliable output.
Fraunholz, D., Zimmermann, M., Anton, S. D., Schneider, J., Schotten, H. Dieter.  2017.  Distributed and highly-scalable WAN network attack sensing and sophisticated analysing framework based on Honeypot technology. 2017 7th International Conference on Cloud Computing, Data Science Engineering - Confluence. :416–421.

Recently, the increase of interconnectivity has led to a rising amount of IoT enabled devices in botnets. Such botnets are currently used for large scale DDoS attacks. To keep track with these malicious activities, Honeypots have proven to be a vital tool. We developed and set up a distributed and highly-scalable WAN Honeypot with an attached backend infrastructure for sophisticated processing of the gathered data. For the processed data to be understandable we designed a graphical frontend that displays all relevant information that has been obtained from the data. We group attacks originating in a short period of time in one source as sessions. This enriches the data and enables a more in-depth analysis. We produced common statistics like usernames, passwords, username/password combinations, password lengths, originating country and more. From the information gathered, we were able to identify common dictionaries used for brute-force login attacks and other more sophisticated statistics like login attempts per session and attack efficiency.

Ren, Z., Chen, G..  2017.  EntropyVis: Malware classification. 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :1–6.

Malware writers often develop malware with automated measures, so the number of malware has increased dramatically. Automated measures tend to repeatedly use significant modules, which form the basis for identifying malware variants and discriminating malware families. Thus, we propose a novel visualization analysis method for researching malware similarity. This method converts malicious Windows Portable Executable (PE) files into local entropy images for observing internal features of malware, and then normalizes local entropy images into entropy pixel images for malware classification. We take advantage of the Jaccard index to measure similarities between entropy pixel images and the k-Nearest Neighbor (kNN) classification algorithm to assign entropy pixel images to different malware families. Preliminary experimental results show that our visualization method can discriminate malware families effectively.

Overbye, T. J., Mao, Z., Shetye, K. S., Weber, J. D..  2017.  An interactive, extensible environment for power system simulation on the PMU time frame with a cyber security application. 2017 IEEE Texas Power and Energy Conference (TPEC). :1–6.

Power system simulation environments with appropriate time-fidelity are needed to enable rapid testing of new smart grid technologies and for coupled simulations of the underlying cyber infrastructure. This paper presents such an environment which operates with power system models in the PMU time frame, including data visualization and interactive control action capabilities. The flexible and extensible capabilities are demonstrated by interfacing with a cyber infrastructure simulation.

Lehner, F., Mazurczyk, W., Keller, J., Wendzel, S..  2017.  Inter-Protocol Steganography for Real-Time Services and Its Detection Using Traffic Coloring Approach. 2017 IEEE 42nd Conference on Local Computer Networks (LCN). :78–85.

Due to improvements in defensive systems, network threats are becoming increasingly sophisticated and complex as cybercriminals are using various methods to cloak their actions. This, among others, includes the application of network steganography e.g. to hide the communication between an infected host and a malicious control server by embedding commands into innocent-looking traffic. Currently, a new subtype of such methods called inter-protocol steganography emerged. It utilizes relationships between two or more overt protocols to hide data. In this paper, we present new inter-protocol hiding techniques which are suitable for real-time services. Afterwards, we introduce and present preliminary results of a novel steganography detection approach which relies on network traffic coloring.

Mattina, Brendan, Yeung, Franki, Hsu, Alex, Savoy, Dale, Tront, Joseph, Raymond, David.  2017.  MARCS: Mobile Augmented Reality for Cybersecurity. Proceedings of the 12th Annual Conference on Cyber and Information Security Research. :10:1–10:4.

Network analysts have long used two-dimensional security visualizations to make sense of overwhelming amounts of network data. As networks grow larger and more complex, two-dimensional displays can become convoluted, compromising user cyber-threat perspective. Using augmented reality to display data with cyber-physical context creates a naturally intuitive interface that helps restore perspective and comprehension sacrificed by complicated two-dimensional visualizations. We introduce Mobile Augmented Reality for Cybersecurity, or MARCS, as a platform to visualize a diverse array of data in real time and space to improve user perspective and threat response. Early work centers around CovARVT and ConnectAR, two proof of concept, prototype applications designed to visualize intrusion detection and wireless association data, respectively.

2018
Yazici, I. M., Karabulut, E., Aktas, M. S..  2018.  A Data Provenance Visualization Approach. 2018 14th International Conference on Semantics, Knowledge and Grids (SKG). :84–91.
Data Provenance has created an emerging requirement for technologies that enable end users to access, evaluate, and act on the provenance of data in recent years. In the era of Big Data, the amount of data created by corporations around the world has grown each year. As an example, both in the Social Media and e-Science domains, data is growing at an unprecedented rate. As the data has grown rapidly, information on the origin and lifecycle of the data has also grown. In turn, this requires technologies that enable the clarification and interpretation of data through the use of data provenance. This study proposes methodologies towards the visualization of W3C-PROV-O Specification compatible provenance data. The visualizations are done by summarization and comparison of the data provenance. We facilitated the testing of these methodologies by providing a prototype, extending an existing open source visualization tool. We discuss the usability of the proposed methodologies with an experimental study; our initial results show that the proposed approach is usable, and its processing overhead is negligible.
Garae, J., Ko, R. K. L., Apperley, M..  2018.  A Full-Scale Security Visualization Effectiveness Measurement and Presentation Approach. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :639–650.
What makes a security visualization effective? How do we measure visualization effectiveness in the context of investigating, analyzing, understanding and reporting cyber security incidents? Identifying and understanding cyber-attacks are critical for decision making - not just at the technical level, but also the management and policy-making levels. Our research studied both questions and extends our Security Visualization Effectiveness Measurement (SvEm) framework by providing a full-scale effectiveness approach for both theoretical and user-centric visualization techniques. Our framework facilitates effectiveness through interactive three-dimensional visualization to enhance both single and multi-user collaboration. We investigated effectiveness metrics including (1) visual clarity, (2) visibility, (3) distortion rates and (4) user response (viewing) times. The SvEm framework key components are: (1) mobile display dimension and resolution factor, (2) security incident entities, (3) user cognition activators and alerts, (4) threat scoring system, (5) working memory load and (6) color usage management. To evaluate our full-scale security visualization effectiveness framework, we developed VisualProgger - a real-time security visualization application (web and mobile) visualizing data provenance changes in SvEm use cases. Finally, the SvEm visualizations aims to gain the users' attention span by ensuring a consistency in the viewer's cognitive load, while increasing the viewer's working memory load. In return, users have high potential to gain security insights in security visualization. Our evaluation shows that viewers perform better with prior knowledge (working memory load) of security events and that circular visualization designs attract and maintain the viewer's attention span. These discoveries revealed research directions for future work relating to measurement of security visualization effectiveness.
Chen, J., Xu, R., Li, C..  2018.  Research of Security Situational Awareness and Visualization Approach in Cloud Computing. 2018 International Conference on Networking and Network Applications (NaNA). :201-205.
Cloud computing is an innovative mechanism to optimize computing and storage resource utilization. Due to its cost-saving, high-efficiency advantage, the technology receives wide adoption from IT industries. However, the frequent emergences of security events become the heaviest obstacle for its advancement. The multi-layer and distributive characteristics of cloud computing make IT admins compulsively collect all necessary situational information at cloud runtime if they want to grasp the panoramic secure state, hereby practice configuration management and emergency response methods when necessary. On the other hand, technologies such as elastic resource pooling, dynamic load balancing and virtual machine real-time migration complicate the difficulty of data gathering, where secure information may come from virtual machine hypervisor, network accounting or host monitor proxies. How to classify, arrange, standardize and visualize these data turns into the most crucial issue for cloud computing security situation awareness and presentation. This dissertation borrows traditional fashion of data visualization to integrate into cloud computing features, proposes a new method for aggregating and displaying secure information which IT admins concern, and expects that by method realization cloud security monitor/management capabilities could be notably enhanced.
Mylrea, M., Gourisetti, S. N. G., Larimer, C., Noonan, C..  2018.  Insider Threat Cybersecurity Framework Webtool Methodology: Defending Against Complex Cyber-Physical Threats. 2018 IEEE Security and Privacy Workshops (SPW). :207–216.

This paper demonstrates how the Insider Threat Cybersecurity Framework (ITCF) web tool and methodology help provide a more dynamic, defense-in-depth security posture against insider cyber and cyber-physical threats. ITCF includes over 30 cybersecurity best practices to help organizations identify, protect, detect, respond and recover to sophisticated insider threats and vulnerabilities. The paper tests the efficacy of this approach and helps validate and verify ITCF's capabilities and features through various insider attacks use-cases. Two case-studies were explored to determine how organizations can leverage ITCF to increase their overall security posture against insider attacks. The paper also highlights how ITCF facilitates implementation of the goals outlined in two Presidential Executive Orders to improve the security of classified information and help owners and operators secure critical infrastructure. In realization of these goals, ITCF: provides an easy to use rapid assessment tool to perform an insider threat self-assessment; determines the current insider threat cybersecurity posture; defines investment-based goals to achieve a target state; connects the cybersecurity posture with business processes, functions, and continuity; and finally, helps develop plans to answer critical organizational cybersecurity questions. In this paper, the webtool and its core capabilities are tested by performing an extensive comparative assessment over two different high-profile insider threat incidents.