Visible to the public Biblio

Filters: Keyword is big data processing  [Clear All Filters]
2023-03-31
Xu, Zichuan, Ren, Wenhao, Liang, Weifa, Xu, Wenzheng, Xia, Qiufen, Zhou, Pan, Li, Mingchu.  2022.  Schedule or Wait: Age-Minimization for IoT Big Data Processing in MEC via Online Learning. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications. :1809–1818.
The age of data (AoD) is identified as one of the most novel and important metrics to measure the quality of big data analytics for Internet-of-Things (IoT) applications. Meanwhile, mobile edge computing (MEC) is envisioned as an enabling technology to minimize the AoD of IoT applications by processing the data in edge servers close to IoT devices. In this paper, we study the AoD minimization problem for IoT big data processing in MEC networks. We first propose an exact solution for the problem by formulating it as an Integer Linear Program (ILP). We then propose an efficient heuristic for the offline AoD minimization problem. We also devise an approximation algorithm with a provable approximation ratio for a special case of the problem, by leveraging the parametric rounding technique. We thirdly develop an online learning algorithm with a bounded regret for the online AoD minimization problem under dynamic arrivals of IoT requests and uncertain network delay assumptions, by adopting the Multi-Armed Bandit (MAB) technique. We finally evaluate the performance of the proposed algorithms by extensive simulations and implementations in a real test-bed. Results show that the proposed algorithms outperform existing approaches by reducing the AoD around 10%.
ISSN: 2641-9874
2020-07-24
Khuntia, Sucharita, Kumar, P. Syam.  2018.  New Hidden Policy CP-ABE for Big Data Access Control with Privacy-preserving Policy in Cloud Computing. 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.
Cloud offers flexible and cost effective storage for big data but the major challenge is access control of big data processing. CP-ABE is a desirable solution for data access control in cloud. However, in CP-ABE the access policy may leak user's private information. To address this issue, Hidden Policy CP-ABE schemes proposed but those schemes still causing data leakage problem because the access policies are partially hidden and create more computational cost. In this paper, we propose a New Hidden Policy Ciphertext Policy Attribute Based Encryption (HP-CP-ABE) to ensure Big Data Access Control with Privacy-preserving Policy in Cloud. In proposed method, we used Multi Secret Sharing Scheme(MSSS) to reduce the computational overhead, while encryption and decryption process. We also applied mask technique on each attribute in access policy and embed the access policy in ciphertext, to protect user's private information from access policy. The security analysis shows that HP-CP-ABE is more secure and preserve the access policy privacy. Performance evaluation shows that our schemes takes less computational cost than existing scheme.
2019-02-25
Lekshmi, M. B., Deepthi, V. R..  2018.  Spam Detection Framework for Online Reviews Using Hadoop’ s Computational Capability. 2018 International CET Conference on Control, Communication, and Computing (IC4). :436–440.
Nowadays, online reviews have become one of the vital elements for customers to do online shopping. Organizations and individuals use this information to buy the right products and make business decisions. This has influenced the spammers or unethical business people to create false reviews and promote their products to out-beat competitions. Sophisticated systems are developed by spammers to create bulk of spam reviews in any websites within hours. To tackle this problem, studies have been conducted to formulate effective ways to detect the spam reviews. Various spam detection methods have been introduced in which most of them extracts meaningful features from the text or used machine learning techniques. These approaches gave little importance on extracted feature type and processing rate. NetSpam[1] defines a framework which can classify the review dataset based on spam features and maps them to a spam detection procedure which performs better than previous works in predictive accuracy. In this work, a method is proposed that can improve the processing rate by applying a distributed approach on review dataset using MapReduce feature. Parallel programming concept using MapReduce is used for processing big data in Hadoop. The solution involves parallelising the algorithm defined in NetSpam and it defines a spam detection procedure with better predictive accuracy and processing rate.
2018-09-12
Nagaratna, M., Sowmya, Y..  2017.  M-sanit: Computing misusability score and effective sanitization of big data using Amazon elastic MapReduce. 2017 International Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC). :029–035.
The invent of distributed programming frameworks like Hadoop paved way for processing voluminous data known as big data. Due to exponential growth of data, enterprises started to exploit the availability of cloud infrastructure for storing and processing big data. Insider attacks on outsourced data causes leakage of sensitive data. Therefore, it is essential to sanitize data so as to preserve privacy or non-disclosure of sensitive data. Privacy Preserving Data Publishing (PPDP) and Privacy Preserving Data Mining (PPDM) are the areas in which data sanitization plays a vital role in preserving privacy. The existing anonymization techniques for MapReduce programming can be improved to have a misusability measure for determining the level of sanitization to be applied to big data. To overcome this limitation we proposed a framework known as M-Sanit which has mechanisms to exploit misusability score of big data prior to performing sanitization using MapReduce programming paradigm. Our empirical study using the real world cloud eco system such as Amazon Elastic Cloud Compute (EC2) and Amazon Elastic MapReduce (EMR) reveals the effectiveness of misusability score based sanitization of big data prior to publishing or mining it.
2017-03-07
Farag, Mohamed, Nakate, Pranav, Fox, Edward A..  2016.  Big Data Processing of School Shooting Archives. Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries. :271–272.

Web archives about school shootings consist of webpages that may or may not be relevant to the events of interest. There are 3 main goals of this work; first is to clean the webpages, which involves getting rid of the stop words and non-relevant parts of a webpage. The second goal is to select just webpages relevant to the events of interest. The third goal is to upload the cleaned and relevant webpages to Apache Solr so that they are easily accessible. We show the details of all the steps required to achieve these goals. The results show that representative Web archives are noisy, with 2% - 40% relevant content. By cleaning the archives, we aid researchers to focus on relevant content for their analysis.

2015-05-05
Lei Xu, Pham Dang Khoa, Seung Hun Kim, Won Woo Ro, Weidong Shi.  2014.  LUT based secure cloud computing #x2014; An implementation using FPGAs. ReConFigurable Computing and FPGAs (ReConFig), 2014 International Conference on. :1-6.

Cloud computing is widely deployed to handle challenges such as big data processing and storage. Due to the outsourcing and sharing feature of cloud computing, security is one of the main concerns that hinders the end users to shift their businesses to the cloud. A lot of cryptographic techniques have been proposed to alleviate the data security issues in cloud computing, but most of these works focus on solving a specific security problem such as data sharing, comparison, searching, etc. At the same time, little efforts have been done on program security and formalization of the security requirements in the context of cloud computing. We propose a formal definition of the security of cloud computing, which captures the essence of the security requirements of both data and program. Analysis of some existing technologies under the proposed definition shows the effectiveness of the definition. We also give a simple look-up table based solution for secure cloud computing which satisfies the given definition. As FPGA uses look-up table as its main computation component, it is a suitable hardware platform for the proposed secure cloud computing scheme. So we use FPGAs to implement the proposed solution for k-means clustering algorithm, which shows the effectiveness of the proposed solution.