Visible to the public Biblio

Filters: Keyword is Electronic voting systems  [Clear All Filters]
2021-03-09
THIGA, M. M..  2020.  Increasing Participation and Security in Student Elections through Online Voting: The Case of Kabarak University. 2020 IST-Africa Conference (IST-Africa). :1—7.

Electronic voting systems have enhanced efficiency in student elections management in universities, supporting such elections to become less expensive, logistically simple, with higher accuracy levels as compared to manually conducted elections. However, e-voting systems that are confined to campus hall voting inhibits access to eligible voters who are away from campus. This study examined the challenges of lack of wide access and impersonation of voter in the student elections of 2018 in Kabarak University. The main objective of this study was therefore to upgrade the offline electronic voting system through developing a secure online voting system and deploying the system for use in the 2019 student elections at Kabarak University. The resultant system and development process employed demonstrate the applicability of a secure online voting not only in the higher education context, but also in other democracies where infusion of online access and authentication in the voting processes is a requisite.

2020-10-16
Babenko, Liudmila, Pisarev, Ilya.  2018.  Security Analysis of the Electronic Voting Protocol Based on Blind Intermediaries Using the SPIN Verifier. 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :43—435.

Cryptographic protocols are the basis for the security of any protected system, including the electronic voting system. One of the most effective ways to analyze protocol security is to use verifiers. In this paper, the formal verifier SPIN was used to analyze the security of the cryptographic protocol for e-voting, which is based on model checking using linear temporal logic (LTL). The cryptographic protocol of electronic voting is described. The main structural units of the Promela language used for simulation in the SPIN verifier are described. The model of the electronic voting protocol in the language Promela is given. The interacting parties, transferred data, the order of the messages transmitted between the parties are described. Security of the cryptographic protocol using the SPIN tool is verified. The simulation of the protocol with active intruder using the man in the middle attack (MITM) to substitute data is made. In the simulation results it is established that the protocol correctly handles the case of an active attack on the parties' authentication.