Visible to the public Biblio

Filters: Keyword is hardware encryption  [Clear All Filters]
2023-02-28
Hroub, Ayman, Elrabaa, Muhammad E. S..  2022.  SecSoC: A Secure System on Chip Architecture for IoT Devices. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :41—44.
IoT technology is finding new applications every day and everywhere in our daily lives. With that, come new use cases with new challenges in terms of device and data security. One of such challenges arises from the fact that many IoT devices/nodes are no longer being deployed on owners' premises, but rather on public or private property other than the owner's. With potential physical access to the IoT node, adversaries can launch many attacks that circumvent conventional protection methods. In this paper, we propose Secure SoC (SecSoC), a secure system-on-chip architecture that mitigates such attacks. This include logical memory dump attacks, bus snooping attacks, and compromised operating systems. SecSoC relies on two main mechanisms, (1) providing security extensions to the compute engine that runs the user application without changing its instruction set, (2) adding a security management unit (SMU) that provide HW security primitives for encryption, hashing, random number generators, and secrets store (keys, certificates, etc.). SecSoC ensures that no secret or sensitive data can leave the SoC IC in plaintext. SecSoC is being implemented in Bluespec System V erilog. The experimental results will reveal the area, power, and cycle time overhead of these security extensions. Overall performance (total execution time) will also be evaluated using IoT benchmarks.
2020-10-16
Zhang, Xin, Cai, Xiaobo, Wang, Chaogang, Han, Ke, Zhang, Shujuan.  2019.  A Dynamic Security Control Architecture for Industrial Cyber-Physical System. 2019 IEEE International Conference on Industrial Internet (ICII). :148—151.

According to the information security requirements of the industrial control system and the technical features of the existing defense measures, a dynamic security control strategy based on trusted computing is proposed. According to the strategy, the Industrial Cyber-Physical System system information security solution is proposed, and the linkage verification mechanism between the internal fire control wall of the industrial control system, the intrusion detection system and the trusted connection server is provided. The information exchange of multiple network security devices is realized, which improves the comprehensive defense capability of the industrial control system, and because the trusted platform module is based on the hardware encryption, storage, and control protection mode, It overcomes the common problem that the traditional repairing and stitching technique based on pure software leads to easy breakage, and achieves the goal of significantly improving the safety of the industrial control system . At the end of the paper, the system analyzes the implementation of the proposed secure industrial control information security system based on the trustworthy calculation.