Visible to the public Biblio

Filters: Keyword is OCSVM  [Clear All Filters]
2023-08-25
Padmavathi, G., Shanmugapriya, D., Asha, S..  2022.  A Framework to Detect the Malicious Insider Threat in Cloud Environment using Supervised Learning Methods. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :354—358.
A malicious insider threat is more vulnerable to an organization. It is necessary to detect the malicious insider because of its huge impact to an organization. The occurrence of a malicious insider threat is less but quite destructive. So, the major focus of this paper is to detect the malicious insider threat in an organization. The traditional insider threat detection algorithm is not suitable for real time insider threat detection. A supervised learning-based anomaly detection technique is used to classify, predict and detect the malicious and non-malicious activity based on highest level of anomaly score. In this paper, a framework is proposed to detect the malicious insider threat using supervised learning-based anomaly detection. It is used to detect the malicious insider threat activity using One-Class Support Vector Machine (OCSVM). The experimental results shows that the proposed framework using OCSVM performs well and detects the malicious insider who obtain huge anomaly score than a normal user.
2020-10-16
Tong, Weiming, Liu, Bingbing, Li, Zhongwei, Jin, Xianji.  2019.  Intrusion Detection Method of Industrial Control System Based on RIPCA-OCSVM. 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). :1148—1154.

In view of the problem that the intrusion detection method based on One-Class Support Vector Machine (OCSVM) could not detect the outliers within the industrial data, which results in the decision function deviating from the training sample, an anomaly intrusion detection algorithm based on Robust Incremental Principal Component Analysis (RIPCA) -OCSVM is proposed in this paper. The method uses RIPCA algorithm to remove outliers in industrial data sets and realize dimensionality reduction. In combination with the advantages of OCSVM on the single classification problem, an anomaly detection model is established, and the Improved Particle Swarm Optimization (IPSO) is used for model parameter optimization. The simulation results show that the method can efficiently and accurately identify attacks or abnormal behaviors while meeting the real-time requirements of the industrial control system (ICS).