Visible to the public Biblio

Filters: Keyword is industrial revolution  [Clear All Filters]
2020-11-02
Bloom, Gedare, Alsulami, Bassma, Nwafor, Ebelechukwu, Bertolotti, Ivan Cibrario.  2018.  Design patterns for the industrial Internet of Things. 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS). :1—10.
The Internet of Things (IoT) is a vast collection of interconnected sensors, devices, and services that share data and information over the Internet with the objective of leveraging multiple information sources to optimize related systems. The technologies associated with the IoT have significantly improved the quality of many existing applications by reducing costs, improving functionality, increasing access to resources, and enhancing automation. The adoption of IoT by industries has led to the next industrial revolution: Industry 4.0. The rise of the Industrial IoT (IIoT) promises to enhance factory management, process optimization, worker safety, and more. However, the rollout of the IIoT is not without significant issues, and many of these act as major barriers that prevent fully achieving the vision of Industry 4.0. One major area of concern is the security and privacy of the massive datasets that are captured and stored, which may leak information about intellectual property, trade secrets, and other competitive knowledge. As a way forward toward solving security and privacy concerns, we aim in this paper to identify common input-output (I/O) design patterns that exist in applications of the IIoT. These design patterns enable constructing an abstract model representation of data flow semantics used by such applications, and therefore better understand how to secure the information related to IIoT operations. In this paper, we describe communication protocols and identify common I/O design patterns for IIoT applications with an emphasis on data flow in edge devices, which, in the industrial control system (ICS) setting, are most often involved in process control or monitoring.
2020-10-19
Hasan, Khondokar Fida, Kaur, Tarandeep, Hasan, Md. Mhedi, Feng, Yanming.  2019.  Cognitive Internet of Vehicles: Motivation, Layered Architecture and Security Issues. 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI). :1–6.
Over the past few years, we have experienced great technological advancements in the information and communication field, which has significantly contributed to reshaping the Intelligent Transportation System (ITS) concept. Evolving from the platform of a collection of sensors aiming to collect data, the data exchanged paradigm among vehicles is shifted from the local network to the cloud. With the introduction of cloud and edge computing along with ubiquitous 5G mobile network, it is expected to see the role of Artificial Intelligence (AI) in data processing and smart decision imminent. So as to fully understand the future automobile scenario in this verge of industrial revolution 4.0, it is necessary first of all to get a clear understanding of the cutting-edge technologies that going to take place in the automotive ecosystem so that the cyber-physical impact on transportation system can be measured. CIoV, which is abbreviated from Cognitive Internet of Vehicle, is one of the recently proposed architectures of the technological evolution in transportation, and it has amassed great attention. It introduces cloud-based artificial intelligence and machine learning into transportation system. What are the future expectations of CIoV? To fully contemplate this architecture's future potentials, and milestones set to achieve, it is crucial to understand all the technologies that leaned into it. Also, the security issues to meet the security requirements of its practical implementation. Aiming to that, this paper presents the evolution of CIoV along with the layer abstractions to outline the distinctive functional parts of the proposed architecture. It also gives an investigation of the prime security and privacy issues associated with technological evolution to take measures.