Biblio
Filters: Keyword is portability [Clear All Filters]
PEDaLS: Persisting Versioned Data Structures. 2021 IEEE International Conference on Cloud Engineering (IC2E). :179—190.
.
2021. In this paper, we investigate how to automatically persist versioned data structures in distributed settings (e.g. cloud + edge) using append-only storage. By doing so, we facilitate resiliency by enabling program state to survive program activations and termination, and program-level data structures and their version information to be accessed programmatically by multiple clients (for replay, provenance tracking, debugging, and coordination avoidance, and more). These features are useful in distributed, failure-prone contexts such as those for heterogeneous and pervasive Internet of Things (IoT) deployments. We prototype our approach within an open-source, distributed operating system for IoT. Our results show that it is possible to achieve algorithmic complexities similar to those of in-memory versioning but in a distributed setting.
CheckMyCode: Assignment Submission System with Cloud-Based Java Compiler. 2020 8th International Conference on Information Technology and Multimedia (ICIMU). :343–347.
.
2020. Learning programming language of Java is a basic part of the Computer Science and Engineering curriculum. Specific Java compiler is a requirement for writing and convert the writing code to executable format. However, some local installed Java compiler is suffering from compatibility, portability and storage space issues. These issues sometimes affect student-learning interest and slow down the learning process. This paper is directed toward the solution for such problems, which offers a new programming assignment submission system with cloud-based Java compiler and is known as CheckMyCode. Leveraging cloud-computing technology in terms of its availability, prevalence and affordability, CheckMyCode implements Java cloud-based programming compiler as a part of the assignment management system. CheckMyCode system is a cloud-based system that allows both main users, which are a lecturer and student to access the system via a browser on PC or smart devices. Modules of submission assignment system with cloud compiler allow lecturer and student to manage Java programming task in one platform. A framework, system module, main user and feature of CheckMyCode are presented. Also, taking into account are the future study/direction and new enhancement of CheckMyCode.
Security Flaws of Operating System Against Live Device Attacks: A case study on live Linux distribution device. 2019 Sixth International Conference on Software Defined Systems (SDS). :154–159.
.
2019. Live Linux distribution devices can hold Linux operating system for portability. Using such devices and distributions, one can access system or critical files, which otherwise cannot be accessed by guest or any unauthorized user. Events like file leakage before the official announcement. These announcements can vary from mobile companies to software industries. Damages caused by such vulnerabilities can be data theft, data tampering, or permanent deletion of certain records. This study uncovers the security flaws of operating system against live device attacks. For this study, we used live devices with different Linux distributions. Target operating systems are exposed to live device attacks and their behavior is recorded against different Linux distribution. This study also compares the robustness level of different operating system against such attacks.