Biblio
The detection of obstacles is a fundamental issue in autonomous navigation, as it is the main key for collision prevention. This paper presents a method for the segmentation of general obstacles by stereo vision with no need of dense disparity maps or assumptions about the scenario. A sparse set of points is selected according to a local spatial condition and then clustered in function of its neighborhood, disparity values and a cost associated with the possibility of each point being part of an obstacle. The method was evaluated in hand-labeled images from KITTI object detection benchmark and the precision and recall metrics were calculated. The quantitative and qualitative results showed satisfactory in scenarios with different types of objects.
For the first time in the history of humanity, more them half of the population is now living in big cities. This scenario has raised concerns related systems that provide basic services to citizens. Even more, those systems has now the responsibility to empower the citizen with information and values that may aid people on daily decisions, such as related to education, transport, healthy and others. This environment creates a set of services that, interconnected, can develop a brand new range of solutions that refers to a term often called System of Systems. In this matter, focusing in a smart city, new challenges related to information security raises, those concerns may go beyond the concept of privacy issues exploring situations where the entire environment could be affected by issues different them only break the confidentiality of a data. This paper intends to discuss and propose 9 security issues that can be part of a smart city environment, and that explores more them just citizens privacy violations.