Biblio
Filters: Keyword is Malware Signature [Clear All Filters]
Malware Family Fingerprinting Through Behavioral Analysis. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1–5.
.
2020. Signature-based malware detection is not always effective at detecting polymorphic variants of known malware. Malware signatures are devised to counter known threats, which also limits efficacy against new forms of malware. However, existing signatures do present the ability to classify malware based upon known malicious behavior which occurs on a victim computer. In this paper we present a method of classifying malware by family type through behavioral analysis, where the frequency of system function calls is used to fingerprint the actions of specific malware families. This in turn allows us to demonstrate a machine learning classifier which is capable of distinguishing malware by family affiliation with high accuracy.
A study to Understand Malware Behavior through Malware Analysis. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–5.
.
2019. Most of the malware detection techniques use malware signatures for detection. It is easy to detect known malicious program in a system but the problem arises when the malware is unknown. Because, unknown malware cannot be detected by using available known malware signatures. Signature based detection techniques fails to detect unknown and zero-day attacks. A novel approach is required to represent malware features effectively to detect obfuscated, unknown, and mutated malware. This paper emphasizes malware behavior, characteristics and properties extracted by different analytic techniques and to decide whether to include them to create behavioral based malware signature. We have made an attempt to understand the malware behavior using a few openly available tools for malware analysis.