Visible to the public Biblio

Filters: Keyword is time 15.0 min to 200.0 min  [Clear All Filters]
2020-10-30
Xu, Lai, Yu, Rongwei, Wang, Lina, Liu, Weijie.  2019.  Memway: in-memorywaylaying acceleration for practical rowhammer attacks against binaries. Tsinghua Science and Technology. 24:535—545.

The Rowhammer bug is a novel micro-architectural security threat, enabling powerful privilege-escalation attacks on various mainstream platforms. It works by actively flipping bits in Dynamic Random Access Memory (DRAM) cells with unprivileged instructions. In order to set up Rowhammer against binaries in the Linux page cache, the Waylaying algorithm has previously been proposed. The Waylaying method stealthily relocates binaries onto exploitable physical addresses without exhausting system memory. However, the proof-of-concept Waylaying algorithm can be easily detected during page cache eviction because of its high disk I/O overhead and long running time. This paper proposes the more advanced Memway algorithm, which improves on Waylaying in terms of both I/O overhead and speed. Running time and disk I/O overhead are reduced by 90% by utilizing Linux tmpfs and inmemory swapping to manage eviction files. Furthermore, by combining Memway with the unprivileged posix fadvise API, the binary relocation step is made 100 times faster. Equipped with our Memway+fadvise relocation scheme, we demonstrate practical Rowhammer attacks that take only 15-200 minutes to covertly relocate a victim binary, and less than 3 seconds to flip the target instruction bit.