Visible to the public Biblio

Filters: Keyword is Vehicle to Vehicle communication  [Clear All Filters]
2022-12-09
M, Gayathri, Gomathy, C..  2022.  Fuzzy based Trusted Communication in Vehicular Ad hoc Network. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1—4.
Vehicular Ad hoc Network (VANET) is an emerging technology that is used to provide communication between vehicle users. VANET provides communication between one vehicle node to another vehicle node, vehicle to the roadside unit, vehicle to pedestrian, and even vehicle to rail users. Communication between nodes should be very secure and confidential, Since VANET communicates through wireless mode, a malicious node may enter inside the communication zone to hack, inject false messages, and interrupt the communication. A strong protocol is necessary to detect malicious nodes and authenticate the VANET user to protect them from malicious attacks. In this paper, a fuzzy-based trust authentication scheme is used to detect malicious nodes with the Mamdani fuzzy Inference system. The parameter estimation, rules have been framed using MATLAB Mamdani Fuzzy Inference system to select a genuine node for data transmission.
2020-11-02
Anzer, Ayesha, Elhadef, Mourad.  2018.  A Multilayer Perceptron-Based Distributed Intrusion Detection System for Internet of Vehicles. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). :438—445.

Security of Internet of vehicles (IoV) is critical as it promises to provide with safer and secure driving. IoV relies on VANETs which is based on V2V (Vehicle to Vehicle) communication. The vehicles are integrated with various sensors and embedded systems allowing them to gather data related to the situation on the road. The collected data can be information associated with a car accident, the congested highway ahead, parked car, etc. This information exchanged with other neighboring vehicles on the road to promote safe driving. IoV networks are vulnerable to various security attacks. The V2V communication comprises specific vulnerabilities which can be manipulated by attackers to compromise the whole network. In this paper, we concentrate on intrusion detection in IoV and propose a multilayer perceptron (MLP) neural network to detect intruders or attackers on an IoV network. Results are in the form of prediction, classification reports, and confusion matrix. A thorough simulation study demonstrates the effectiveness of the new MLP-based intrusion detection system.