Visible to the public Biblio

Filters: Keyword is Bitstream Protection  [Clear All Filters]
2022-10-03
Zeitouni, Shaza, Vliegen, Jo, Frassetto, Tommaso, Koch, Dirk, Sadeghi, Ahmad-Reza, Mentens, Nele.  2021.  Trusted Configuration in Cloud FPGAs. 2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). :233–241.
In this paper we tackle the open paradoxical challenge of FPGA-accelerated cloud computing: On one hand, clients aim to secure their Intellectual Property (IP) by encrypting their configuration bitstreams prior to uploading them to the cloud. On the other hand, cloud service providers disallow the use of encrypted bitstreams to mitigate rogue configurations from damaging or disabling the FPGA. Instead, cloud providers require a verifiable check on the hardware design that is intended to run on a cloud FPGA at the netlist-level before generating the bitstream and loading it onto the FPGA, therefore, contradicting the IP protection requirement of clients. Currently, there exist no practical solution that can adequately address this challenge.We present the first practical solution that, under reasonable trust assumptions, satisfies the IP protection requirement of the client and provides a bitstream sanity check to the cloud provider. Our proof-of-concept implementation uses existing tools and commodity hardware. It is based on a trusted FPGA shell that utilizes less than 1% of the FPGA resources on a Xilinx VCU118 evaluation board, and an Intel SGX machine running the design checks on the client bitstream.
2020-11-02
Duncan, Adam, Rahman, Fahim, Lukefahr, Andrew, Farahmandi, Farimah, Tehranipoor, Mark.  2019.  FPGA Bitstream Security: A Day in the Life. 2019 IEEE International Test Conference (ITC). :1—10.

Security concerns for field-programmable gate array (FPGA) applications and hardware are evolving as FPGA designs grow in complexity, involve sophisticated intellectual properties (IPs), and pass through more entities in the design and implementation flow. FPGAs are now routinely found integrated into system-on-chip (SoC) platforms, cloud-based shared computing resources, and in commercial and government systems. The IPs included in FPGAs are sourced from multiple origins and passed through numerous entities (such as design house, system integrator, and users) through the lifecycle. This paper thoroughly examines the interaction of these entities from the perspective of the bitstream file responsible for the actual hardware configuration of the FPGA. Five stages of the bitstream lifecycle are introduced to analyze this interaction: 1) bitstream-generation, 2) bitstream-at-rest, 3) bitstream-loading, 4) bitstream-running, and 5) bitstream-end-of-life. Potential threats and vulnerabilities are discussed at each stage, and both vendor-offered and academic countermeasures are highlighted for a robust and comprehensive security assurance.