Visible to the public Biblio

Filters: Keyword is data-hungry deep models  [Clear All Filters]
2020-11-02
Pan, C., Huang, J., Gong, J., Yuan, X..  2019.  Few-Shot Transfer Learning for Text Classification With Lightweight Word Embedding Based Models. IEEE Access. 7:53296–53304.
Many deep learning architectures have been employed to model the semantic compositionality for text sequences, requiring a huge amount of supervised data for parameters training, making it unfeasible in situations where numerous annotated samples are not available or even do not exist. Different from data-hungry deep models, lightweight word embedding-based models could represent text sequences in a plug-and-play way due to their parameter-free property. In this paper, a modified hierarchical pooling strategy over pre-trained word embeddings is proposed for text classification in a few-shot transfer learning way. The model leverages and transfers knowledge obtained from some source domains to recognize and classify the unseen text sequences with just a handful of support examples in the target problem domain. The extensive experiments on five datasets including both English and Chinese text demonstrate that the simple word embedding-based models (SWEMs) with parameter-free pooling operations are able to abstract and represent the semantic text. The proposed modified hierarchical pooling method exhibits significant classification performance in the few-shot transfer learning tasks compared with other alternative methods.