Biblio
Currently, the complexity of software quality and testing is increasing exponentially with a huge number of challenges knocking doors, especially when testing a mission-critical application in banking and other critical domains, or the new technology trends with decentralized and nonintegrated testing tools. From practical experience, software testing has become costly and more effort-intensive with unlimited scope. This thesis promotes the Scalable Quality and Testing Lab (SQTL), it's a centralized quality and testing platform, which integrates a powerful manual, automation and business intelligence tools. SQTL helps quality engineers (QE) effectively organize, manage and control all testing activities in one centralized lab, starting from creating test cases, then executing different testing types such as web, security and others. And finally, ending with analyzing and displaying all testing activities result in an interactive dashboard, which allows QE to forecast new bugs especially those related to security. The centralized SQTL is to empower QE during the testing cycle, help them to achieve a greater level of software quality in minimum time, effort and cost, and decrease defect density metric.
Software integration in modern vehicles is continuously expanding. This is due to the fact that vehicle manufacturers are always trying to enhance and add more innovative and competitive features that may rely on complex software functionalities. However, these features come at a cost. They amplify the security vulnerabilities in vehicles and lead to more security issues in today's automobiles. As a result, the need for identifying vulnerable components in a vehicle software system has become crucial. Security experts need to know which components of the vehicle software system can be exploited for attacks and should focus their testing and inspection efforts on it. Nevertheless, it is a challenging and costly task to identify these weak components in a vehicle's system. In this paper, we propose some security vulnerability metrics for connected vehicles that aim to assist software testers during the development life-cycle in order to identify the frail links that put the vehicle at highsecurity risks. Vulnerable function assessment can give software testers a good idea about which components in a connected vehicle need to be prioritized in order to mitigate the risk and hence secure the vehicle. The proposed metrics were applied to OpenPilot - a software that provides Autopilot feature - and has been integrated with 48 different vehicles.. The application shows how the defined metrics can be effectively used to quantitatively measure the vulnerabilities of a vehicle software system.
The purpose of this paper is to analyze all Cloud based Service Models, Continuous Integration, Deployment and Delivery process and propose an Automated Continuous Testing and testing as a service based TestBot and metrics dashboard which will be integrated with all existing automation, bug logging, build management, configuration and test management tools. Recently cloud is being used by organizations to save time, money and efforts required to setup and maintain infrastructure and platform. Continuous Integration and Delivery is in practice nowadays within Agile methodology to give capability of multiple software releases on daily basis and ensuring all the development, test and Production environments could be synched up quickly. In such an agile environment there is need to ramp up testing tools and processes so that overall regression testing including functional, performance and security testing could be done along with build deployments at real time. To support this phenomenon, we researched on Continuous Testing and worked with industry professionals who are involved in architecting, developing and testing the software products. A lot of research has been done towards automating software testing so that testing of software product could be done quickly and overall testing process could be optimized. As part of this paper we have proposed ACT TestBot tool, metrics dashboard and coined 4S quality metrics term to quantify quality of the software product. ACT testbot and metrics dashboard will be integrated with Continuous Integration tools, Bug reporting tools, test management tools and Data Analytics tools to trigger automation scripts, continuously analyze application logs, open defects automatically and generate metrics reports. Defect pattern report will be created to support root cause analysis and to take preventive action.
This paper begins with an introduction to security metrics, describing the need for security metrics, followed by a discussion of the nature of security metrics, including the challenges found with some security metrics used in the past. The paper then discusses what makes a good security metric and proposes a rigorous step-by-step method that can be applied to design good security metrics, and to test existing security metrics to see if they are good metrics. Application examples are included to illustrate the method.