Visible to the public Biblio

Filters: Keyword is vulnerable source code  [Clear All Filters]
2021-01-20
Rashid, A., Siddique, M. J., Ahmed, S. M..  2020.  Machine and Deep Learning Based Comparative Analysis Using Hybrid Approaches for Intrusion Detection System. 2020 3rd International Conference on Advancements in Computational Sciences (ICACS). :1—9.

Intrusion detection is one of the most prominent and challenging problem faced by cybersecurity organizations. Intrusion Detection System (IDS) plays a vital role in identifying network security threats. It protects the network for vulnerable source code, viruses, worms and unauthorized intruders for many intranet/internet applications. Despite many open source APIs and tools for intrusion detection, there are still many network security problems exist. These problems are handled through the proper pre-processing, normalization, feature selection and ranking on benchmark dataset attributes prior to the enforcement of self-learning-based classification algorithms. In this paper, we have performed a comprehensive comparative analysis of the benchmark datasets NSL-KDD and CIDDS-001. For getting optimal results, we have used the hybrid feature selection and ranking methods before applying self-learning (Machine / Deep Learning) classification algorithmic approaches such as SVM, Naïve Bayes, k-NN, Neural Networks, DNN and DAE. We have analyzed the performance of IDS through some prominent performance indicator metrics such as Accuracy, Precision, Recall and F1-Score. The experimental results show that k-NN, SVM, NN and DNN classifiers perform approx. 100% accuracy regarding performance evaluation metrics on the NSL-KDD dataset whereas k-NN and Naïve Bayes classifiers perform approx. 99% accuracy on the CIDDS-001 dataset.

2020-11-04
Al-Far, A., Qusef, A., Almajali, S..  2018.  Measuring Impact Score on Confidentiality, Integrity, and Availability Using Code Metrics. 2018 International Arab Conference on Information Technology (ACIT). :1—9.

Confidentiality, Integrity, and Availability are principal keys to build any secure software. Considering the security principles during the different software development phases would reduce software vulnerabilities. This paper measures the impact of the different software quality metrics on Confidentiality, Integrity, or Availability for any given object-oriented PHP application, which has a list of reported vulnerabilities. The National Vulnerability Database was used to provide the impact score on confidentiality, integrity, and availability for the reported vulnerabilities on the selected applications. This paper includes a study for these scores and its correlation with 25 code metrics for the given vulnerable source code. The achieved results were able to correlate 23.7% of the variability in `Integrity' to four metrics: Vocabulary Used in Code, Card and Agresti, Intelligent Content, and Efferent Coupling metrics. The Length (Halstead metric) could alone predict about 24.2 % of the observed variability in ` Availability'. The results indicate no significant correlation of `Confidentiality' with the tested code metrics.