Visible to the public Biblio

Filters: Keyword is distance learning  [Clear All Filters]
2023-05-12
Pratticó, Filippo Gabriele, Shabkhoslati, Javad Alizadeh, Shaghaghi, Navid, Lamberti, Fabrizio.  2022.  Bot Undercover: On the Use of Conversational Agents to Stimulate Teacher-Students Interaction in Remote Learning. 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). :277–282.
In this work, the use of an undercover conversational agent, acting as a participative student in a synchronous virtual reality distance learning scenario is proposed to stimulate social interaction between teacher and students. The outcome of an exploratory user study indicated that the undercover conversational agent is capable of fostering interaction, relieving social pressure, and overall leading to a more satisfactory and engaging learning experience without sacrificing learning performance.
2022-12-01
Embarak, Ossama.  2022.  An adaptive paradigm for smart education systems in smart cities using the internet of behaviour (IoB) and explainable artificial intelligence (XAI). 2022 8th International Conference on Information Technology Trends (ITT). :74—79.
The rapid shift towards smart cities, particularly in the era of pandemics, necessitates the employment of e-learning, remote learning systems, and hybrid models. Building adaptive and personalized education becomes a requirement to mitigate the downsides of distant learning while maintaining high levels of achievement. Explainable artificial intelligence (XAI), machine learning (ML), and the internet of behaviour (IoB) are just a few of the technologies that are helping to shape the future of smart education in the age of smart cities through Customization and personalization. This study presents a paradigm for smart education based on the integration of XAI and IoB technologies. The research uses data acquired on students' behaviours to determine whether or not the current education systems respond appropriately to learners' requirements. Despite the existence of sophisticated education systems, they have not yet reached the degree of development that allows them to be tailored to learners' cognitive needs and support them in the absence of face-to-face instruction. The study collected data on 41 learner's behaviours in response to academic activities and assessed whether the running systems were able to capture such behaviours and respond appropriately or not; the study used evaluation methods that demonstrated that there is a change in students' academic progression concerning monitoring using IoT/IoB to enable a relative response to support their progression.
2022-08-26
Liang, Kai, Wu, Youlong.  2021.  Two-layer Coded Gradient Aggregation with Straggling Communication Links. 2020 IEEE Information Theory Workshop (ITW). :1—5.
In many distributed learning setups such as federated learning, client nodes at the edge use individually collected data to compute the local gradients and send them to a central master server, and the master aggregates the received gradients and broadcasts the aggregation to all clients with which the clients can update the global model. As straggling communication links could severely affect the performance of distributed learning system, Prakash et al. proposed to utilize helper nodes and coding strategy to achieve resiliency against straggling client-to-helpers links. In this paper, we propose two coding schemes: repetition coding (RC) and MDS coding both of which enable the clients to update the global model in the presence of only helpers but without the master. Moreover, we characterize the uplink and downlink communication loads, and prove the tightness of uplink communication load. Theoretical tradeoff between uplink and downlink communication loads is established indicating that larger uplink communication load could reduce downlink communication load. Compared to Prakash's schemes which require a master to connect with helpers though noiseless links, our scheme can even reduce the communication load in the absence of master when the number of clients and helpers is relatively large compared to the number of straggling links.
2020-11-04
Deng, Y., Lu, D., Chung, C., Huang, D., Zeng, Z..  2018.  Personalized Learning in a Virtual Hands-on Lab Platform for Computer Science Education. 2018 IEEE Frontiers in Education Conference (FIE). :1—8.

This Innovate Practice full paper presents a cloud-based personalized learning lab platform. Personalized learning is gaining popularity in online computer science education due to its characteristics of pacing the learning progress and adapting the instructional approach to each individual learner from a diverse background. Among various instructional methods in computer science education, hands-on labs have unique requirements of understanding learner's behavior and assessing learner's performance for personalization. However, it is rarely addressed in existing research. In this paper, we propose a personalized learning platform called ThoTh Lab specifically designed for computer science hands-on labs in a cloud environment. ThoTh Lab can identify the learning style from student activities and adapt learning material accordingly. With the awareness of student learning styles, instructors are able to use techniques more suitable for the specific student, and hence, improve the speed and quality of the learning process. With that in mind, ThoTh Lab also provides student performance prediction, which allows the instructors to change the learning progress and take other measurements to help the students timely. For example, instructors may provide more detailed instructions to help slow starters, while assigning more challenging labs to those quick learners in the same class. To evaluate ThoTh Lab, we conducted an experiment and collected data from an upper-division cybersecurity class for undergraduate students at Arizona State University in the US. The results show that ThoTh Lab can identify learning style with reasonable accuracy. By leveraging the personalized lab platform for a senior level cybersecurity course, our lab-use study also shows that the presented solution improves students engagement with better understanding of lab assignments, spending more effort on hands-on projects, and thus greatly enhancing learning outcomes.