Visible to the public Biblio

Filters: Keyword is cache management  [Clear All Filters]
2018-06-11
Ding, W., Wang, J., Lu, K., Zhao, R., Wang, X., Zhu, Y..  2017.  Optimal Cache Management and Routing for Secure Content Delivery in Information-Centric Networks with Network Coding. 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC). :267–274.

Information-Centric Network (ICN) is one of the most promising network architecture to handle the problem of rapid increase of data traffic because it allows in-network cache. ICNs with Linear Network Coding (LNC) can greatly improve the performance of content caching and delivery. In this paper, we propose a Secure Content Caching and Routing (SCCR) framework based on Software Defined Network (SDN) to find the optimal cache management and routing for secure content delivery, which aims to firstly minimize the total cost of cache and bandwidth consumption and then minimize the usage of random chunks to guarantee information theoretical security (ITS). Specifically, we firstly propose the SCCR problem and then introduce the main ideas of the SCCR framework. Next, we formulate the SCCR problem to two Linear Programming (LP) formulations and design the SCCR algorithm based on them to optimally solve the SCCR problem. Finally, extensive simulations are conducted to evaluate the proposed SCCR framework and algorithms.

2018-03-26
Raza, Ali, Zaki, Yasir, Pötsch, Thomas, Chen, Jay, Subramanian, Lakshmi.  2017.  xCache: Rethinking Edge Caching for Developing Regions. Proceedings of the Ninth International Conference on Information and Communication Technologies and Development. :5:1–5:11.

End-users in emerging markets experience poor web performance due to a combination of three factors: high server response time, limited edge bandwidth and the complexity of web pages. The absence of cloud infrastructure in developing regions and the limited bandwidth experienced by edge nodes constrain the effectiveness of conventional caching solutions for these contexts. This paper describes the design, implementation and deployment of xCache, a cloud-managed Internet caching architecture that aims to proactively profile popular web pages and maintain the liveness of popular content at software defined edge caches to enhance the cache hit rate with minimal bandwidth overhead. xCache uses a Cloud Controller that continuously analyzes active cloud-managed web pages and derives an object-group representation of web pages based on the objects of a page. Using this object-group representation, xCache computes a bandwidth-aware utility measure to derive the most valuable configuration for each edge cache. Our preliminary real-world deployment across university campuses in three developing regions demonstrates its potential compared to conventional caching by improving cache hit rates by about 15%. Our evaluations of xCache have also shown that it can be applied in conjunction with other web optimizations solutions like Shandian, and can improve page load times by more than 50%.

2015-05-05
Sourlas, V., Tassiulas, L..  2014.  Replication management and cache-aware routing in information-centric networks. Network Operations and Management Symposium (NOMS), 2014 IEEE. :1-7.

Content distribution in the Internet places content providers in a dominant position, with delivery happening directly between two end-points, that is, from content providers to consumers. Information-Centrism has been proposed as a paradigm shift from the host-to-host Internet to a host-to-content one, or in other words from an end-to-end communication system to a native distribution network. This trend has attracted the attention of the research community, which has argued that content, instead of end-points, must be at the center stage of attention. Given this emergence of information-centric solutions, the relevant management needs in terms of performance have not been adequately addressed, yet they are absolutely essential for relevant network operations and crucial for the information-centric approaches to succeed. Performance management and traffic engineering approaches are also required to control routing, to configure the logic for replacement policies in caches and to control decisions where to cache, for instance. Therefore, there is an urgent need to manage information-centric resources and in fact to constitute their missing management and control plane which is essential for their success as clean-slate technologies. In this thesis we aim to provide solutions to crucial problems that remain, such as the management of information-centric approaches which has not yet been addressed, focusing on the key aspect of route and cache management.