Visible to the public Biblio

Filters: Keyword is semantic fake data  [Clear All Filters]
2020-11-16
Roisum, H., Urizar, L., Yeh, J., Salisbury, K., Magette, M..  2019.  Completeness Integrity Protection for Outsourced Databases Using Semantic Fake Data. 2019 4th International Conference on Communication and Information Systems (ICCIS). :222–228.
As cloud storage and computing gains popularity, data entrusted to the cloud has the potential to be exposed to more people and thus more vulnerable to attacks. It is important to develop mechanisms to protect data privacy and integrity so that clients can safely outsource their data to the cloud. We present a method for ensuring data completeness which is one facet of the data integrity problem. Our approach converts a standard database to a Completeness Protected Database (CPDB) by inserting some semantic fake data before outsourcing it to the cloud. These fake data are initially produced using our generating function which uses Order Preserving Encryption, which allows the user to be able to regenerate these fake data and match them to fake data returned from a range query to check for completeness. The CPDB is innovative in the following ways: (1) fake data is deterministically generated but is semantically indistinguishable from other existing data; (2) since fake data is generated by deterministic functions, data owners do not need to locally store the fake data that have been inserted, instead they can re-generate fake data using the functions; (3) no costly data encryption/signature is used in our scheme compared to previous work which encrypt/sign the entire database.