Visible to the public Biblio

Found 173 results

Filters: Keyword is SDN  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Abbood, Zainab Ali, Atilla, Doğu Çağdaş, Aydin, Çağatay, Mahmoud, Mahmoud Shuker.  2021.  A Survey on Intrusion Detection System in Ad Hoc Networks Based on Machine Learning. 2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI). :1–8.
This advanced research survey aims to perform intrusion detection and routing in ad hoc networks in wireless MANET networks using machine learning techniques. The MANETs are composed of several ad-hoc nodes that are randomly or deterministically distributed for communication and acquisition and to forward the data to the gateway for enhanced communication securely. MANETs are used in many applications such as in health care for communication; in utilities such as industries to monitor equipment and detect any malfunction during regular production activity. In general, MANETs take measurements of the desired application and send this information to a gateway, whereby the user can interpret the information to achieve the desired purpose. The main importance of MANETs in intrusion detection is that they can be trained to detect intrusion and real-time attacks in the CIC-IDS 2019 dataset. MANETs routing protocols are designed to establish routes between the source and destination nodes. What these routing protocols do is that they decompose the network into more manageable pieces and provide ways of sharing information among its neighbors first and then throughout the whole network. The landscape of exciting libraries and techniques is constantly evolving, and so are the possibilities and options for experiments. Implementing the framework in python helps in reducing syntactic complexity, increases performance compared to implementations in scripting languages, and provides memory safety.
Abdelwahed, N., Letaifa, A. Ben, Asmi, S. El.  2018.  Content Based Algorithm Aiming to Improve the WEB\_QoE Over SDN Networks. 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA). :153–158.
Since the 1990s, the concept of QoE has been increasingly present and many scientists take it into account within different fields of application. Taking for example the case of video streaming, the QoE has been well studied in this case while for the web the study of its QoE is relatively neglected. The Quality of Experience (QoE) is the set of objective and subjective characteristics that satisfy retain or give confidence to a user through the life cycle of a service. There are researches that take the different measurement metrics of QoE as a subject, others attack new ways to improve this QoE in order to satisfy the customer and gain his loyalty. In this paper, we focus on the web QoE that is declined by researches despite its great importance given the complexity of new web pages and their utility that is increasingly critical. The wealth of new web pages in images, videos, audios etc. and their growing significance prompt us to write this paper, in which we discuss a new method that aims to improve the web QoE in a software-defined network (SDN). Our proposed method consists in automating and making more flexible the management of the QoE improvement of the web pages and this by writing an algorithm that, depending on the case, chooses the necessary treatment to improve the web QoE of the page concerned and using both web prefetching and caching to accelerate the data transfer when the user asks for it. The first part of the paper discusses the advantages and disadvantages of existing works. In the second part we propose an automatic algorithm that treats each case with the appropriate solution that guarantees its best performance. The last part is devoted to the evaluation of the performance.
Abdulkarem, H. S., Dawod, A..  2020.  DDoS Attack Detection and Mitigation at SDN Data Plane Layer. 2020 2nd Global Power, Energy and Communication Conference (GPECOM). :322—326.
In the coming future, Software-defined networking (SDN) will become a technology more responsive, fully automated, and highly secure. SDN is a way to manage networks by separate the control plane from the forwarding plane, by using software to manage network functions through a centralized control point. A distributed denial-of-service (DDoS) attack is the most popular malicious attempt to disrupt normal traffic of a targeted server, service, or network. The problem of the paper is the DDoS attack inside the SDN environment and how could use SDN specifications through the advantage of Open vSwitch programmability feature to stop the attack. This paper presents DDoS attack detection and mitigation in the SDN data-plane by applying a written SDN application in python language, based on the malicious traffic abnormal behavior to reduce the interference with normal traffic. The evaluation results reveal detection and mitigation time between 100 to 150 sec. The work also sheds light on the programming relevance with the open daylight controller over an abstracted view of the network infrastructure.
Ahalawat, Anchal, Dash, Shashank Sekhar, Panda, Abinas, Babu, Korra Sathya.  2019.  Entropy Based DDoS Detection and Mitigation in OpenFlow Enabled SDN. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–5.
Distributed Denial of Service(DDoS) attacks have become most important network security threat as the number of devices are connected to internet increases exponentially and reaching an attack volume approximately very high compared to other attacks. To make the network safe and flexible a new networking infrastructure such as Software Defined Networking (SDN) has come into effect, which relies on centralized controller and decoupling of control and data plane. However due to it's centralized controller it is prone to DDoS attacks, as it makes the decision of forwarding of packets based on rules installed in switch by OpenFlow protocol. Out of all different DDoS attacks, UDP (User Datagram Protocol) flooding constitute the most in recent years. In this paper, we have proposed an entropy based DDoS detection and rate limiting based mitigation for efficient service delivery. We have evaluated using Mininet as emulator and Ryu as controller by taking switch as OpenVswitch and obtained better result in terms of bandwidth utilization and hit ratio which consume network resources to make denial of service.
Ahmed, M. E., Kim, H..  2017.  DDoS Attack Mitigation in Internet of Things Using Software Defined Networking. 2017 IEEE Third International Conference on Big Data Computing Service and Applications (BigDataService). :271–276.

Securing Internet of Things (IoT) systems is a challenge because of its multiple points of vulnerability. A spate of recent hacks and security breaches has unveiled glaring vulnerabilities in the IoT. Due to the computational and memory requirement constraints associated with anomaly detection algorithms in core networks, commercial in-line (part of the direct line of communication) Anomaly Detection Systems (ADSs) rely on sampling-based anomaly detection approaches to achieve line rates and truly-inline anomaly detection accuracy in real-time. However, packet sampling is inherently a lossy process which might provide an incomplete and biased approximation of the underlying traffic patterns. Moreover, commercial routers uses proprietary software making them closed to be manipulated from the outside. As a result, detecting malicious packets on the given network path is one of the most challenging problems in the field of network security. We argue that the advent of Software Defined Networking (SDN) provides a unique opportunity to effectively detect and mitigate DDoS attacks. Unlike sampling-based approaches for anomaly detection and limitation of proprietary software at routers, we use the SDN infrastructure to relax the sampling-based ADS constraints and collect traffic flow statistics which are maintained at each SDN-enabled switch to achieve high detection accuracy. In order to implement our idea, we discuss how to mitigate DDoS attacks using the features of SDN infrastructure.

Ahuja, Nisha, Singal, Gaurav.  2019.  DDOS Attack Detection Prevention in SDN using OpenFlow Statistics. 2019 IEEE 9th International Conference on Advanced Computing (IACC). :147–152.
Software defined Network is a network defined by software, which is one of the important feature which makes the legacy old networks to be flexible for dynamic configuration and so can cater to today's dynamic application requirement. It is a programmable network but it is prone to different type of attacks due to its centralized architecture. The author provided a solution to detect and prevent Distributed Denial of service attack in the paper. Mininet [5] which is a popular emulator for Software defined Network is used. We followed the approach in which collection of the traffic statistics from the various switches is done. After collection we calculated the packet rate and bandwidth which shoots up to high values when attack take place. The abrupt increase detects the attack which is then prevented by changing the forwarding logic of the host nodes to drop the packets instead of forwarding. After this, no more packets will be forwarded and then we also delete the forwarding rule in the flow table. Hence, we are finding out the change in packet rate and bandwidth to detect the attack and to prevent the attack we modify the forwarding logic of the switch flow table to drop the packets coming from malicious host instead of forwarding it.
Akbari, I., Tahoun, E., Salahuddin, M. A., Limam, N., Boutaba, R..  2020.  ATMoS: Autonomous Threat Mitigation in SDN using Reinforcement Learning. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—9.
Machine Learning has revolutionized many fields of computer science. Reinforcement Learning (RL), in particular, stands out as a solution to sequential decision making problems. With the growing complexity of computer networks in the face of new emerging technologies, such as the Internet of Things and the growing complexity of threat vectors, there is a dire need for autonomous network systems. RL is a viable solution for achieving this autonomy. Software-defined Networking (SDN) provides a global network view and programmability of network behaviour, which can be employed for security management. Previous works in RL-based threat mitigation have mostly focused on very specific problems, mostly non-sequential, with ad-hoc solutions. In this paper, we propose ATMoS, a general framework designed to facilitate the rapid design of RL applications for network security management using SDN. We evaluate our framework for implementing RL applications for threat mitigation, by showcasing the use of ATMoS with a Neural Fitted Q-learning agent to mitigate an Advanced Persistent Threat. We present the RL model's convergence results showing the feasibility of our solution for active threat mitigation.
Akhtar, Nabeel, Matta, Ibrahim, Raza, Ali, Wang, Yuefeng.  2018.  EL-SEC: ELastic Management of Security Applications on Virtualized Infrastructure. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :778-783.

The concept of Virtualized Network Functions (VNFs) aims to move Network Functions (NFs) out of dedicated hardware devices into software that runs on commodity hardware. A single NF consists of multiple VNF instances, usually running on virtual machines in a cloud infrastructure. The elastic management of an NF refers to load management across the VNF instances and the autonomic scaling of the number of VNF instances as the load on the NF changes. In this paper, we present EL-SEC, an autonomic framework to elastically manage security NFs on a virtualized infrastructure. As a use case, we deploy the Snort Intrusion Detection System as the NF on the GENI testbed. Concepts from control theory are used to create an Elastic Manager, which implements various controllers - in this paper, Proportional Integral (PI) and Proportional Integral Derivative (PID) - to direct traffic across the VNF Snort instances by monitoring the current load. RINA (a clean-slate Recursive InterNetwork Architecture) is used to build a distributed application that monitors load and collects Snort alerts, which are processed by the Elastic Manager and an Attack Analyzer, respectively. Software Defined Networking (SDN) is used to steer traffic through the VNF instances, and to block attack traffic. Our results show that virtualized security NFs can be easily deployed using our EL-SEC framework. With the help of real-time graphs, we show that PI and PID controllers can be used to easily scale the system, which leads to quicker detection of attacks.

Al-Rushdan, Huthifh, Shurman, Mohammad, Alnabelsi, Sharhabeel H., Althebyan, Qutaibah.  2019.  Zero-Day Attack Detection and Prevention in Software-Defined Networks. 2019 International Arab Conference on Information Technology (ACIT). :278–282.

The zero-day attack in networks exploits an undiscovered vulnerability, in order to affect/damage networks or programs. The term “zero-day” refers to the number of days available to the software or the hardware vendor to issue a patch for this new vulnerability. Currently, the best-known defense mechanism against the zero-day attacks focuses on detection and response, as a prevention effort, which typically fails against unknown or new vulnerabilities. To the best of our knowledge, this attack has not been widely investigated for Software-Defined Networks (SDNs). Therefore, in this work we are motivated to develop anew zero-day attack detection and prevention mechanism, which is designed and implemented for SDN using a modified sandbox tool, named Cuckoo. Our experiments results, under UNIX system, show that our proposed design successfully stops zero-day malwares by isolating the infected client, and thus, prevents these malwares from infesting other clients.

Ali, Muhammad, Hu, Yim-Fun, Luong, Doanh Kim, Oguntala, George, Li, Jian-Ping, Abdo, Kanaan.  2020.  Adversarial Attacks on AI based Intrusion Detection System for Heterogeneous Wireless Communications Networks. 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). :1–6.
It has been recognized that artificial intelligence (AI) will play an important role in future societies. AI has already been incorporated in many industries to improve business processes and automation. Although the aviation industry has successfully implemented flight management systems or autopilot to automate flight operations, it is expected that full embracement of AI remains a challenge. Given the rigorous validation process and the requirements for the highest level of safety standards and risk management, AI needs to prove itself being safe to operate. This paper addresses the safety issues of AI deployment in an aviation network compatible with the Future Communication Infrastructure that utilizes heterogeneous wireless access technologies for communications between the aircraft and the ground networks. It further considers the exploitation of software defined networking (SDN) technologies in the ground network while the adoption of SDN in the airborne network can be optional. Due to the nature of centralized management in SDN-based network, the SDN controller can become a single point of failure or a target for cyber attacks. To countermeasure such attacks, an intrusion detection system utilises AI techniques, more specifically deep neural network (DNN), is considered. However, an adversary can target the AI-based intrusion detection system. This paper examines the impact of AI security attacks on the performance of the DNN algorithm. Poisoning attacks targeting the DSL-KDD datasets which were used to train the DNN algorithm were launched at the intrusion detection system. Results showed that the performance of the DNN algorithm has been significantly degraded in terms of the mean square error, accuracy rate, precision rate and the recall rate.
Aliyu, A. L., Bull, P., Abdallah, A..  2017.  A Trust Management Framework for Network Applications within an SDN Environment. 2017 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA). :93–98.

Software Defined Networking (SDN) is an emerging paradigm that changes the way networks are managed by separating the control plane from data plane and making networks programmable. The separation brings about flexibility, automation, orchestration and offers savings in both capital and operational expenditure. Despite all the advantages offered by SDN it introduces new threats that did not exist before or were harder to exploit in traditional networks, making network penetration potentially easier. One of the key threat to SDN is the authentication and authorisation of network applications that control network behaviour (unlike the traditional network where network devices like routers and switches are autonomous and run proprietary software and protocols to control the network). This paper proposes a mechanism that helps the control layer authenticate network applications and set authorisation permissions that constrict manipulation of network resources.

Arsalan, A., Rehman, R. A..  2018.  Prevention of Timing Attack in Software Defined Named Data Network with VANETs. 2018 International Conference on Frontiers of Information Technology (FIT). :247–252.

Software Defined Network (SDN) is getting popularity both from academic and industry. Lot of researches have been made to combine SDN with future Internet paradigms to manage and control networks efficiently. SDN provides better management and control in a network through decoupling of data and control plane. Named Data Networking (NDN) is a future Internet technique with aim to replace IPv4 addressing problems. In NDN, communication between different nodes done on the basis of content names rather than IP addresses. Vehicular Ad-hoc Network (VANET) is a subtype of MANET which is also considered as a hot area for future applications. Different vehicles communicate with each other to form a network known as VANET. Communication between VANET can be done in two ways (i) Vehicle to Vehicle (V2V) (ii) Vehicle to Infrastructure (V2I). Combination of SDN and NDN techniques in future Internet can solve lot of problems which were hard to answer by considering a single technique. Security in VANET is always challenging due to unstable topology of VANET. In this paper, we merge future Internet techniques and propose a new scheme to answer timing attack problem in VANETs named as Timing Attack Prevention (TAP) protocol. Proposed scheme is evaluated through simulations which shows the superiority of proposed protocol regarding detection and mitigation of attacker vehicles as compared to normal timing attack scenario in NDN based VANET.

Aseeri, Ahmad, Netjinda, Nuttapong, Hewett, Rattikorn.  2017.  Alleviating Eavesdropping Attacks in Software-defined Networking Data Plane. Proceedings of the 12th Annual Conference on Cyber and Information Security Research. :1:1–1:8.
Software-Defined Networking (SDN) is an emerging paradigm that introduces a concept of programmable networks to enhance the agility in networking management. By separating concerns of the data plane and the control plane, implementing network switching as packet forwarding, and using centralized software to logically control the entire networks, SDN makes it simpler to automate and configure the network to respond to high-level policy enforcement and dynamically changing network conditions. As SDN becomes more prevalent, its security issues are increasingly critical. Eaves-dropping attacks are one of the most common and important network attacks because they are relatively easy to implement and their effects can escalate to more severe attacks. This paper addresses the issue of how to cope with eavesdropping attacks in the SDN data plane by using multiple routing paths to reduce the severity of data leakage. While this existing approach appears to be considerably effective, our simple analysis uncovers that without a proper strategy of data communication, it can still lead to 100% of data exposure. The paper describes a remedy along with illustrations both analytically and experimentally. The results show that our proposed remedy can avoid such catastrophe and further reduces the percentage of risk from data exposure approximately by a factor of 1/n where n is the number of alternate disjoint paths.
Aydeger, Abdullah, Saputro, Nico, Akkaya, Kemal.  2018.  Utilizing NFV for Effective Moving Target Defense Against Link Flooding Reconnaissance Attacks. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :946—951.

Moving target defense (MTD) is becoming popular with the advancements in Software Defined Networking (SDN) technologies. With centralized management through SDN, changing the network attributes such as routes to escape from attacks is simple and fast. Yet, the available alternate routes are bounded by the network topology, and a persistent attacker that continuously perform the reconnaissance can extract the whole link-map of the network. To address this issue, we propose to use virtual shadow networks (VSNs) by applying Network Function Virtualization (NFV) abilities to the network in order to deceive attacker with the fake topology information and not reveal the actual network topology and characteristics. We design this approach under a formal framework for Internet Service Provider (ISP) networks and apply it to the recently emerged indirect DDoS attacks, namely Crossfire, for evaluation. The results show that attacker spends more time to figure out the network behavior while the costs on the defender and network operations are negligible until reaching a certain network size.

B
Ben Ujcich, University of Illinois at Urbana-Champaign.  2017.  Securing SDNs with App Provenance.

Presented at the UIUC/R2 Monthly Meeting on September 18, 2017.

Bhunia, S. S., Gurusamy, M..  2017.  Dynamic attack detection and mitigation in IoT using SDN. 2017 27th International Telecommunication Networks and Applications Conference (ITNAC). :1–6.

With the advent of smart devices and lowering prices of sensing devices, adoption of Internet of Things (IoT) is gaining momentum. These IoT devices come with greater threat of being attacked or compromised that could lead to Denial of Service (DoS) and Distributed Denial of Service (DDoS). The high volume of IoT devices with high level of heterogeneity, magnify the possibility of security threats. So far, there is no protocol to guarantee the security of IoT devices. But to enable resilience, continuous monitoring is required along with adaptive decision making. These challenges can be addressed with the help of Software Defined Networking (SDN) which can effectively handle the security threats to the IoT devices in dynamic and adaptive manner without any burden on the IoT devices. In this paper, we propose an SDN-based secure IoT framework called SoftThings to detect abnormal behaviors and attacks as early as possible and mitigate as appropriate. Machine Learning is used at the SDN controller to monitor and learn the behavior of IoT devices over time. We have conducted experiments on Mininet emulator. Initial results show that this framework is capable to detect attacks on IoT with around 98% precision.

Boite, J., Nardin, P. A., Rebecchi, F., Bouet, M., Conan, V..  2017.  Statesec: Stateful monitoring for DDoS protection in software defined networks. 2017 IEEE Conference on Network Softwarization (NetSoft). :1–9.

Software-Defined Networking (SDN) allows for fast reactions to security threats by dynamically enforcing simple forwarding rules as counter-measures. However, in classic SDN all the intelligence resides at the controller, with the switches only capable of performing stateless forwarding as ruled by the controller. It follows that the controller, in addition to network management and control duties, must collect and process any piece of information required to take advanced (stateful) forwarding decisions. This threatens both to overload the controller and to congest the control channel. On the other hand, stateful SDN represents a new concept, developed both to improve reactivity and to offload the controller and the control channel by delegating local treatments to the switches. In this paper, we adopt this stateful paradigm to protect end-hosts from Distributed Denial of Service (DDoS). We propose StateSec, a novel approach based on in-switch processing capabilities to detect and mitigate DDoS attacks. StateSec monitors packets matching configurable traffic features (e.g., IP src/dst, port src/dst) without resorting to the controller. By feeding an entropy-based algorithm with such monitoring features, StateSec detects and mitigates several threats such as (D)DoS and port scans with high accuracy. We implemented StateSec and compared it with a state-of-the-art approach to monitor traffic in SDN. We show that StateSec is more efficient: it achieves very accurate detection levels, limiting at the same time the control plane overhead.

Brooks, Richard, Wang, Kuang-Ching, Oakley, Jon, Tusing, Nathan.  2020.  Global Internet Traffic Routing and Privacy. 2020 International Scientific and Technical Conference Modern Computer Network Technologies (MoNeTeC). :1—7.
Current Internet Protocol routing provides minimal privacy, which enables multiple exploits. The main issue is that the source and destination addresses of all packets appear in plain text. This enables numerous attacks, including surveillance, man-in-the-middle (MITM), and denial of service (DoS). The talk explains how these attacks work in the current network. Endpoints often believe that use of Network Address Translation (NAT), and Dynamic Host Configuration Protocol (DHCP) can minimize the loss of privacy.We will explain how the regularity of human behavior can be used to overcome these countermeasures. Once packets leave the local autonomous system (AS), they are routed through the network by the Border Gateway Protocol (BGP). The talk will discuss the unreliability of BGP and current attacks on the routing protocol. This will include an introduction to BGP injects and the PEERING testbed for BGP experimentation. One experiment we have performed uses statistical methods (CUSUM and F-test) to detect BGP injection events. We describe work we performed that applies BGP injects to Internet Protocol (IP) address randomization to replace fixed IP addresses in headers with randomized addresses. We explain the similarities and differences of this approach with virtual private networks (VPNs). Analysis of this work shows that BGP reliance on autonomous system (AS) numbers removes privacy from the concept, even though it would disable the current generation of MITM and DoS attacks. We end by presenting a compromise approach that creates software-defined data exchanges (SDX), which mix traffic randomization with VPN concepts. We contrast this approach with the Tor overlay network and provide some performance data.
Bülbül, Nuref\c san Sertba\c s, Fischer, Mathias.  2020.  SDN/NFV-Based DDoS Mitigation via Pushback. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Distributed Denial of Service (DDoS) attacks aim at bringing down or decreasing the availability of services for their legitimate users, by exhausting network or server resources. It is difficult to differentiate attack traffic from legitimate traffic as the attack can come from distributed nodes that additionally might spoof their IP addresses. Traditional DoS mitigation solutions fail to defend all kinds of DoS attacks and huge DoS attacks might exceed the processing capacity of routers and firewalls easily. The advent of Software-defined Networking (SDN) and Network Function Virtualization (NFV) has brought a new perspective for network defense. Key features of such technologies like global network view and flexibly positionable security functionality can be used for mitigating DDoS attacks. In this paper, we propose a collaborative DDoS attack mitigation scheme that uses SDN and NFV. We adopt a machine learning algorithm from related work to derive accurate patterns describing DDoS attacks. Our experimental results indicate that our framework is able to differentiate attack and legitimate traffic with high accuracy and in near-realtime. Furthermore, the derived patterns can be used to create OpenFlow (OF) or Firewall rules that can be pushed back into the direction of the attack origin for more efficient and distributed filtering.
C
Chen, Guangxuan, Wu, Di, Chen, Guangxiao, Qin, Panke, Zhang, Lei, Liu, Qiang.  2019.  Research on Digital Forensics Framework for Malicious Behavior in Cloud. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 1:1375—1379.

The difficult of detecting, response, tracing the malicious behavior in cloud has brought great challenges to the law enforcement in combating cybercrimes. This paper presents a malicious behavior oriented framework of detection, emergency response, traceability, and digital forensics in cloud environment. A cloud-based malicious behavior detection mechanism based on SDN is constructed, which implements full-traffic flow detection technology and malicious virtual machine detection based on memory analysis. The emergency response and traceability module can clarify the types of the malicious behavior and the impacts of the events, and locate the source of the event. The key nodes and paths of the infection topology or propagation path of the malicious behavior will be located security measure will be dispatched timely. The proposed IaaS service based forensics module realized the virtualization facility memory evidence extraction and analysis techniques, which can solve volatile data loss problems that often happened in traditional forensic methods.

Cho, Joo Yeon, Szyrkowiec, Thomas.  2018.  Practical Authentication and Access Control for Software-Defined Networking over Optical Networks. Proceedings of the 2018 Workshop on Security in Softwarized Networks: Prospects and Challenges. :8-13.

A framework of Software-Defined Networking (SDN) provides a centralized and integrated method to manage and control modern optical networks. Unfortunately, the centralized and programmable structure of SDN introduces several new security threats, which may allow an adversary to take over the entire operation of the network. In this paper, we investigate the potential security threats of SDN over optical networks and propose a mutual authentication and a fine-grained access control mechanism, which are essential to avoid an unauthorized access to the network. The proposed schemes are based only on cryptographic hash functions and do not require an installation of the complicated cryptographic library such as SSL. Unlike conventional authentication and access control schemes, the proposed schemes are flexible, compact and, in addition, are resistant to quantum computer attacks, which may become critical in the near future.

Chowdhary, Ankur, Huang, Dijiang, Alshamrani, Adel, Kang, Myong, Kim, Anya, Velazquez, Alexander.  2019.  TRUFL: Distributed Trust Management Framework in SDN. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Software Defined Networking (SDN) has emerged as a revolutionary paradigm to manage cloud infrastructure. SDN lacks scalable trust setup and verification mechanism between Data Plane-Control Plane elements, Control Plane elements, and Control Plane-Application Plane. Trust management schemes like Public Key Infrastructure (PKI) used currently in SDN are slow for trust establishment in a larger cloud environment. We propose a distributed trust mechanism - TRUFL to establish and verify trust in SDN. The distributed framework utilizes parallelism in trust management, in effect faster transfer rates and reduced latency compared to centralized trust management. The TRUFL framework scales well with the number of OpenFlow rules when compared to existing research works.
Cox, J. H., Clark, R. J., Owen, H. L..  2016.  Security policy transition framework for Software Defined networks. 2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :56–61.

Controllers for software defined networks (SDNs) are quickly maturing to offer network operators more intuitive programming frameworks and greater abstractions for network application development. Likewise, many security solutions now exist within SDN environments for detecting and blocking clients who violate network policies. However, many of these solutions stop at triggering the security measure and give little thought to amending it. As a consequence, once the violation is addressed, no clear path exists for reinstating the flagged client beyond having the network operator reset the controller or manually implement a state change via an external command. This presents a burden for the network and its clients and administrators. Hence, we present a security policy transition framework for revoking security measures in an SDN environment once said measures are activated.

Cox, Jr., Jacob H., Clark, Russell J., Owen, III, Henry L..  2016.  Leveraging SDN to Improve the Security of DHCP. Proceedings of the 2016 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. :35–38.

Current State of the art technologies for detecting and neutralizing rogue DHCP servers are tediously complex and prone to error. Network operators can spend hours (even days) before realizing that a rogue server is affecting their network. Additionally, once network operators suspect that a rogue server is active on their network, even more hours can be spent finding the server's MAC address and preventing it from affecting other clients. Not only are such methods slow to eliminate rogue servers, they are also likely to affect other clients as network operators shutdown services while attempting to locate the server. In this paper, we present Network Flow Guard (NFG), a simple security application that utilizes the software defined networking (SDN) paradigm of programmable networks to detect and disable rogue servers before they are able to affect network clients. Consequently, the key contributions of NFG are its modular approach and its automated detection/prevention of rogue DHCP servers, which is accomplished with little impact to network architecture, protocols, and network operators.

D
Demirci, S., Sagiroglu, S..  2018.  Software-Defined Networking for Improving Security in Smart Grid Systems. 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA). :1021–1026.

This paper presents a review on how to benefit from software-defined networking (SDN) to enhance smart grid security. For this purpose, the attacks threatening traditional smart grid systems are classified according to availability, integrity, and confidentiality, which are the main cyber-security objectives. The traditional smart grid architecture is redefined with SDN and a conceptual model for SDN-based smart grid systems is proposed. SDN based solutions to the mentioned security threats are also classified and evaluated. Our conclusions suggest that SDN helps to improve smart grid security by providing real-time monitoring, programmability, wide-area security management, fast recovery from failures, distributed security and smart decision making based on big data analytics.