Visible to the public Biblio

Filters: Keyword is IEEE Regions  [Clear All Filters]
2022-01-31
Yim, Hyoungshin, Kang, Ju-Sung, Yeom, Yongjin.  2021.  An Efficient Structural Analysis of SAS and its Application to White-Box Cryptography. 2021 IEEE Region 10 Symposium (TENSYMP). :1–6.

Structural analysis is the study of finding component functions for a given function. In this paper, we proceed with structural analysis of structures consisting of the S (nonlinear Substitution) layer and the A (Affine or linear) layer. Our main interest is the S1AS2 structure with different substitution layers and large input/output sizes. The purpose of our structural analysis is to find the functionally equivalent oracle F* and its component functions for a given encryption oracle F(= S2 ∘ A ∘ S1). As a result, we can construct the decryption oracle F*−1 explicitly and break the one-wayness of the building blocks used in a White-box implementation. Our attack consists of two steps: S layer recovery using multiset properties and A layer recovery using differential properties. We present the attack algorithm for each step and estimate the time complexity. Finally, we discuss the applicability of S1AS2 structural analysis in a White-box Cryptography environment.

2020-12-01
Poulsen, A., Burmeister, O. K., Tien, D..  2018.  Care Robot Transparency Isn't Enough for Trust. 2018 IEEE Region Ten Symposium (Tensymp). :293—297.

A recent study featuring a new kind of care robot indicated that participants expect a robot's ethical decision-making to be transparent to develop trust, even though the same type of `inspection of thoughts' isn't expected of a human carer. At first glance, this might suggest that robot transparency mechanisms are required for users to develop trust in robot-made ethical decisions. But the participants were found to desire transparency only when they didn't know the specifics of a human-robot social interaction. Humans trust others without observing their thoughts, which implies other means of determining trustworthiness. The study reported here suggests that the method is social interaction and observation, signifying that trust is a social construct. Moreover, that `social determinants of trust' are the transparent elements. This socially determined behaviour draws on notions of virtue ethics. If a caregiver (nurse or robot) consistently provides good, ethical care, then patients can trust that caregiver to do so often. The same social determinants may apply to care robots and thus it ought to be possible to trust them without the ability to see their thoughts. This study suggests why transparency mechanisms may not be effective in helping to develop trust in care robot ethical decision-making. It suggests that roboticists need to build sociable elements into care robots to help patients to develop patient trust in the care robot's ethical decision-making.