Visible to the public Biblio

Filters: Keyword is optical wireless communications  [Clear All Filters]
2022-03-01
Vegni, Anna Maria, Hammouda, Marwan, Loscr\'ı, Valeria.  2021.  A VLC-Based Footprinting Localization Algorithm for Internet of Underwater Things in 6G Networks. 2021 17th International Symposium on Wireless Communication Systems (ISWCS). :1–6.
In the upcoming advent of 6G networks, underwater communications are expected to play a relevant role in the context of overlapping hybrid wireless networks, following a multilayer architecture i.e., aerial-ground-underwater. The concept of Internet of Underwater Things defines different communication and networking technologies, as well as positioning and tracking services, suitable for harsh underwater scenarios. In this paper, we present a footprinting localization algorithm based on optical wireless signals in the visible range. The proposed technique is based on a hybrid Radio Frequency (RF) and Visible Light Communication (VLC) network architecture, where a central RF sensor node holds an environment channel gain map i.e., database, that is exploited for localization estimation computation. A recursive localization algorithm allows to estimate user positions with centimeter-based accuracy, in case of different turbidity scenarios.
2015-05-05
Di Renzo, M., Haas, H., Ghrayeb, A., Sugiura, S., Hanzo, L..  2014.  Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation. Proceedings of the IEEE. 102:56-103.

A key challenge of future mobile communication research is to strike an attractive compromise between wireless network's area spectral efficiency and energy efficiency. This necessitates a clean-slate approach to wireless system design, embracing the rich body of existing knowledge, especially on multiple-input-multiple-ouput (MIMO) technologies. This motivates the proposal of an emerging wireless communications concept conceived for single-radio-frequency (RF) large-scale MIMO communications, which is termed as SM. The concept of SM has established itself as a beneficial transmission paradigm, subsuming numerous members of the MIMO system family. The research of SM has reached sufficient maturity to motivate its comparison to state-of-the-art MIMO communications, as well as to inspire its application to other emerging wireless systems such as relay-aided, cooperative, small-cell, optical wireless, and power-efficient communications. Furthermore, it has received sufficient research attention to be implemented in testbeds, and it holds the promise of stimulating further vigorous interdisciplinary research in the years to come. This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM-MIMO. The paper is concluded with the description of the world's first experimental activities in this vibrant research field.