Visible to the public Biblio

Filters: Keyword is STAR  [Clear All Filters]
2021-09-07
Tarek, Md Nurul Anwar, Novak, Markus, Alwan, Elias A..  2020.  RF Coupling Suppression Circuit for Simultaneous Transmit and Receive Systems. 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. :1833–1834.
Wireless technology is growing at a fast rate to accommodate the expanding user demands. Currently the radio frequency (RF) spectrum is highly congested and more susceptible to signal fratricide and interference. Therefore, full duplexing techniques are required to enhance the access to the spectrum. Simultaneous Transmit and receive systems (STAR), also known as in-band full duplex systems, are gaining higher attention due to their capability to double spectral efficiency. However, successful implementation of STAR systems requires significant isolation between the transmit and receive signals to reduce self-interference (SI) signal. To minimize this self-interference, front-end coupling cancellation circuits are employed in STAR system. In this paper, an RF coupling suppression circuit is presented based on a hybrid finite impulse response filter (FIR) and resonator architecture. Notably, this newly developed FIR-resonator circuit achieves \textbackslashtextgreater30dB cancellation across a \textbackslashtextgreater1.5:1 bandwidth.
2020-12-01
Attia, M., Hossny, M., Nahavandi, S., Dalvand, M., Asadi, H..  2018.  Towards Trusted Autonomous Surgical Robots. 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :4083—4088.

Throughout the last few decades, a breakthrough took place in the field of autonomous robotics. They have been introduced to perform dangerous, dirty, difficult, and dull tasks, to serve the community. They have been also used to address health-care related tasks, such as enhancing the surgical skills of the surgeons and enabling surgeries in remote areas. This may help to perform operations in remote areas efficiently and in timely manner, with or without human intervention. One of the main advantages is that robots are not affected with human-related problems such as: fatigue or momentary lapses of attention. Thus, they can perform repeated and tedious operations. In this paper, we propose a framework to establish trust in autonomous medical robots based on mutual understanding and transparency in decision making.