Biblio
Global Navigation Satellite System (GNSS) jamming is an evolving technology where new modulations are progressively introduced in order to reduce the impact of interference mitigation techniques such as Adaptive Notch Filters (ANFs). The Standardisation of GNSS Threat reporting and Receiver testing through International Knowledge Exchange, Experimentation and Exploitation (STRIKE3) project recently described a new class of jamming signals, called tick signals, where a basic frequency tick is hopped over a large frequency range. In this way, discontinuities are introduced in the instantaneous frequency of the jamming signals. These discontinuities reduce the effectiveness of ANFs, which unable to track the jamming signal. This paper analyses the effectiveness of interference mitigation techniques with respect to frequency-hopped tick jamming signals. ANFs and Robust Interference Mitigation (RIM) techniques are analysed. From the analysis, it emerges that, despite the presence of frequency discontinuities, ANFs provide some margin against tick signals. However, frequency discontinuities prevent ANFs to remove all the jamming components and receiver operations are denied for moderate Jamming to Noise power ratio (J/N) values, RIM techniques are not affected by the presence of frequency discontinuities and significantly higher jamming power are sustained by the receiver when this type of techniques is adopted.
With the rapid development of radio detection and wireless communication, narrowband radio-frequency interference (NB-RFI) is a serious threat for GNSS-R (global navigation satellite systems - reflectometry) receivers. However, interferometric GNSS-R (iGNSS-R) is more prone to the NB-RFIs than conventional GNSS-R (cGNSS-R), due to wider bandwidth and unclean replica. Therefore, there is strong demand of detecting and mitigating NB-RFIs for GNSS-R receivers, especially iGNSS-R receivers. Hence, focusing on working with high sampling rate and simplifying the fixed-point implementation on FPGA, this paper proposes a system design exploiting cascading IIR band-stop filters (BSFs) to suppress NB-RFIs. Furthermore, IIR BSF compared with IIR notch filter (NF) and IIR band-pass filter (BPF) is the merely choice that is able to mitigate both white narrowband interference (WNBI) and continuous wave interference (CWI) well. Finally, validation and evaluation are conducted, and then it is indicated that the system design can detect NB-RFIs and suppress WNBI and CWI effectively, which improves the signal-to-noise ratio (SNR) of the Delay-Doppler map (DDM).
Multipath propagation of radio waves negatively affects to the performance of telecommunications and radio navigation systems. When performing time and frequency synchronization tasks of spatially separated standards, the multipath signal propagation aggravates the probability of a correct synchronization and introduces an error. The presence of a multipath signal reduces the signal-to-noise ratio in the received signal, which in turn causes an increase in the synchronization error. If the time delay of the additional beam (s) is less than the useful signal duration, the reception of the useful signal is further complicated by the presence of a partially correlated interference, the level and correlation degree of which increases with decreasing time delay of the interference signals. The article considers with the method of multi-path interference compensation in a multi-position (telecommunication or radio navigation system) or a time and frequency synchronization system for the case if at least one of the receiving positions has no noise signal or does not exceed the permissible level. The essence of the method is that the interference-free useful signal is transmitted to other points in order to pick out the interference component from the signal / noise mix. As a result, an interference-free signal is used for further processing. The mathematical models of multipath interference suppressors in the temporal and in the frequency domain are presented in the article. Compared to time processing, processing in the frequency domain reduces computational costs. The operation of the suppressor in the time domain has been verified experimentally.
Wireless networks in buildings suffer from congestion, interference, security and safety concerns, restricted propagation and poor in-door location accuracy. The Internet of Radio-Light (IoRL) project develops a safer, more secure, customizable and intelligent building network that reliably delivers increased throughput (greater than lOGbps) from access points pervasively located within buildings, whilst minimizing interference and harmful EM exposure and providing location accuracy of less than 10 cm. It thereby shows how to solve the problem of broadband wireless access in buildings and promotes the establishment of a global standard in ITU.
With the advancement of unmanned aerial vehicles (UAV), 3D wireless mesh networks will play a crucial role in next generation mission critical wireless networks. Along with providing coverage over difficult terrain, it provides better spectral utilization through 3D spatial reuse. However, being a wireless network, 3D meshes are vulnerable to jamming/disruptive attacks. A jammer can disrupt the communication, as well as control of the network by intelligently causing interference to a set of nodes. This paper presents a distributed mechanism of avoiding jamming attacks by means of 3D spatial filtering where adaptive beam nulling is used to keep the jammer in null region in order to bypass jamming. Kalman filter based tracking mechanism is used to estimate the most likely trajectory of the jammer from noisy observation of the jammer's position. A beam null border is determined by calculating confidence region of jammer's current and next position estimates. An optimization goal is presented to calculate optimal beam null that minimizes the number of deactivated links while maximizing the higher value of confidence for keeping the jammer inside the null. The survivability of a 3D mesh network with a mobile jammer is studied through simulation that validates an 96.65% reduction in the number of jammed nodes.
In this paper, we propose techniques for combating source selective jamming attacks in tactical cognitive MANETs. Secure, reliable and seamless communications are important for facilitating tactical operations. Selective jamming attacks pose a serious security threat to the operations of wireless tactical MANETs since selective strategies possess the potential to completely isolate a portion of the network from other nodes without giving a clear indication of a problem. Our proposed mitigation techniques use the concept of address manipulation, which differ from other techniques presented in open literature since our techniques employ de-central architecture rather than a centralized framework and our proposed techniques do not require any extra overhead. Experimental results show that the proposed techniques enable communications in the presence of source selective jamming attacks. When the presence of a source selective jammer blocks transmissions completely, implementing a proposed flipped address mechanism increases the expected number of required transmission attempts only by one in such scenario. The probability that our second approach, random address assignment, fails to solve the correct source MAC address can be as small as 10-7 when using accurate parameter selection.
With the growing demand for increased spectral efficiencies, there has been renewed interest in enabling full-duplex communications. However, existing approaches to enable full-duplex require a clean-slate approach to address the key challenge in full-duplex, namely self-interference suppression. This serves as a big deterrent to enabling full-duplex in existing cellular networks. Towards our vision of enabling full-duplex in legacy cellular, specifically LTE networks, with no modifications to existing hardware at BS and client as well as technology specific industry standards, we present the design of our experimental system FD-LTE, that incorporates a combination of passive SI cancellation schemes, with legacy LTE half-duplex BS and client devices. We build a prototype of FD-LTE, integrate it with LTE's evolved packet core and conduct over-the-air experiments to explore the feasibility and potential for full-duplex with legacy LTE networks. We report promising experimental results from FD-LTE, which currently applies to scenarios with limited ranges that is typical of small cells.