Visible to the public Biblio

Filters: Keyword is Passive Optical Network  [Clear All Filters]
2023-07-21
Singh, Kiran Deep, Singh, Prabhdeep, Tripathi, Vikas, Khullar, Vikas.  2022.  A Novel and Secure Framework to Detect Unauthorized Access to an Optical Fog-Cloud Computing Network. 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC). :618—622.
Securing optical edge devices across an optical network is a critical challenge for the technological capabilities of fog/cloud computing. Locating and blocking rogue devices from transmitting data frames in an optical network is a significant security problem due to their widespread distribution over the optical fog cloud. A malicious actor might simply compromise such a device and execute assaults that degrade the optical channel’s Quality. In this study, we advocate an innovative framework for the use of an optical network to facilitate cloud and fog computing in a safe environment. This framework is sustainable and able to detect hostile equipment in optical fog and cloud and redirect it to a honeypot, where the assault may be halted and analyzed. To do this, it employs a model based on a two-stage hidden Markov, a fog manager based on an intrusion detection system, and an optical virtual honeypot. An internal assault is mitigated by simulated testing of the suggested system. The findings validate the adaptable and affordable access for cloud computing and optical fog.
2020-12-02
Naik, D., Nikita, De, T..  2018.  Congestion aware traffic grooming in elastic optical and WiMAX network. 2018 Technologies for Smart-City Energy Security and Power (ICSESP). :1—9.

In recent years, integration of Passive Optical Net-work(PON) and WiMAX (Worldwide Interoperability Microwave Access Network) network is attracting huge interest among many researchers. The continuous demand for large bandwidths with wider coverage area are the key drivers to this technology. This integration has led to high speed and cost efficient solution for internet accessibility. This paper investigates the issues related to traffic grooming, routing and resource allocation in the hybrid networks. The Elastic Optical Network forms Backbone and is integrated with WiMAX. In this novel approach, traffic grooming is carried out using light trail technique to minimize the bandwidth blocking ratio and also reduce the network resource consumption. The simulation is performed on different network topologies, where in the traffic is routed through three modes namely the pure Wireless Network, the Wireless-Optical/Optical-Wireless Network, the pure Optical Network keeping the network congestion in mind. The results confirm reduction in bandwidth blocking ratio in all the given networks coupled with minimum network resource utilization.