Visible to the public Biblio

Filters: Keyword is cloud-based framework  [Clear All Filters]
2022-05-05
Salman, Zainab, Hammad, Mustafa, Al-Omary, Alauddin Yousif.  2021.  A Homomorphic Cloud Framework for Big Data Analytics Based on Elliptic Curve Cryptography. 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :7—11.
Homomorphic Encryption (HE) comes as a sophisticated and powerful cryptography system that can preserve the privacy of data in all cases when the data is at rest or even when data is in processing and computing. All the computations needed by the user or the provider can be done on the encrypted data without any need to decrypt it. However, HE has overheads such as big key sizes and long ciphertexts and as a result long execution time. This paper proposes a novel solution for big data analytic based on clustering and the Elliptical Curve Cryptography (ECC). The Extremely Distributed Clustering technique (EDC) has been used to divide big data into several subsets of cloud computing nodes. Different clustering techniques had been investigated, and it was found that using hybrid techniques can improve the performance and efficiency of big data analytic while at the same time data is protected and privacy is preserved using ECC.
2020-12-07
Silva, J. L. da, Assis, M. M., Braga, A., Moraes, R..  2019.  Deploying Privacy as a Service within a Cloud-Based Framework. 2019 9th Latin-American Symposium on Dependable Computing (LADC). :1–4.
Continuous monitoring and risk assessment of privacy violations on cloud systems are needed by anyone who has business needs subject to privacy regulations. Compliance to such regulations in dynamic systems demands appropriate techniques, tools and instruments. As a Service concepts can be a good option to support this task. Previous work presented PRIVAaaS, a software toolkit that allows controlling and reducing data leakages, thus preserving privacy, by providing anonymization capabilities to query-based systems. This short paper discusses the implementation details and deployment environment of an evolution of PRIVAaaS as a MAPE-K control loop within the ATMOSPHERE Platform. ATMOSPHERE is both a framework and a platform enabling the implementation of trustworthy cloud services. By enabling PRIVAaaS within ATMOSPHERE, privacy is made one of several trustworthiness properties continuously monitored and assessed by the platform with a software-based, feedback control loop known as MAPE-K.