Visible to the public Biblio

Found 114 results

Filters: Keyword is security analysis  [Clear All Filters]
2014-09-17
Da, Gaofeng, Xu, Maochao, Xu, Shouhuai.  2014.  A New Approach to Modeling and Analyzing Security of Networked Systems. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :6:1–6:12.

Modeling and analyzing security of networked systems is an important problem in the emerging Science of Security and has been under active investigation. In this paper, we propose a new approach towards tackling the problem. Our approach is inspired by the shock model and random environment techniques in the Theory of Reliability, while accommodating security ingredients. To the best of our knowledge, our model is the first that can accommodate a certain degree of adaptiveness of attacks, which substantially weakens the often-made independence and exponential attack inter-arrival time assumptions. The approach leads to a stochastic process model with two security metrics, and we attain some analytic results in terms of the security metrics.

Xu, Shouhuai.  2014.  Cybersecurity Dynamics. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :14:1–14:2.

We explore the emerging field of Cybersecurity Dynamics, a candidate foundation for the Science of Cybersecurity.

2015-04-30
Shila, D.M., Venugopal, V..  2014.  Design, implementation and security analysis of Hardware Trojan Threats in FPGA. Communications (ICC), 2014 IEEE International Conference on. :719-724.

Hardware Trojan Threats (HTTs) are stealthy components embedded inside integrated circuits (ICs) with an intention to attack and cripple the IC similar to viruses infecting the human body. Previous efforts have focused essentially on systems being compromised using HTTs and the effectiveness of physical parameters including power consumption, timing variation and utilization for detecting HTTs. We propose a novel metric for hardware Trojan detection coined as HTT detectability metric (HDM) that uses a weighted combination of normalized physical parameters. HTTs are identified by comparing the HDM with an optimal detection threshold; if the monitored HDM exceeds the estimated optimal detection threshold, the IC will be tagged as malicious. As opposed to existing efforts, this work investigates a system model from a designer perspective in increasing the security of the device and an adversary model from an attacker perspective exposing and exploiting the vulnerabilities in the device. Using existing Trojan implementations and Trojan taxonomy as a baseline, seven HTTs were designed and implemented on a FPGA testbed; these Trojans perform a variety of threats ranging from sensitive information leak, denial of service to beat the Root of Trust (RoT). Security analysis on the implemented Trojans showed that existing detection techniques based on physical characteristics such as power consumption, timing variation or utilization alone does not necessarily capture the existence of HTTs and only a maximum of 57% of designed HTTs were detected. On the other hand, 86% of the implemented Trojans were detected with HDM. We further carry out analytical studies to determine the optimal detection threshold that minimizes the summation of false alarm and missed detection probabilities.

2015-05-01
Hong Liu, Huansheng Ning, Yan Zhang, Qingxu Xiong, Yang, L.T..  2014.  Role-Dependent Privacy Preservation for Secure V2G Networks in the Smart Grid. Information Forensics and Security, IEEE Transactions on. 9:208-220.

Vehicle-to-grid (V2G), involving both charging and discharging of battery vehicles (BVs), enhances the smart grid substantially to alleviate peaks in power consumption. In a V2G scenario, the communications between BVs and power grid may confront severe cyber security vulnerabilities. Traditionally, authentication mechanisms are solely designed for the BVs when they charge electricity as energy customers. In this paper, we first show that, when a BV interacts with the power grid, it may act in one of three roles: 1) energy demand (i.e., a customer); 2) energy storage; and 3) energy supply (i.e., a generator). In each role, we further demonstrate that the BV has dissimilar security and privacy concerns. Hence, the traditional approach that only considers BVs as energy customers is not universally applicable for the interactions in the smart grid. To address this new security challenge, we propose a role-dependent privacy preservation scheme (ROPS) to achieve secure interactions between a BV and power grid. In the ROPS, a set of interlinked subprotocols is proposed to incorporate different privacy considerations when a BV acts as a customer, storage, or a generator. We also outline both centralized and distributed discharging operations when a BV feeds energy back into the grid. Finally, security analysis is performed to indicate that the proposed ROPS owns required security and privacy properties and can be a highly potential security solution for V2G networks in the smart grid. The identified security challenge as well as the proposed ROPS scheme indicates that role-awareness is crucial for secure V2G networks.

Hongzhen Du, Qiaoyan Wen.  2014.  Security analysis of two certificateless short signature schemes. Information Security, IET. 8:230-233.

Certificateless public key cryptography (CL-PKC) combines the advantage of both traditional PKC and identity-based cryptography (IBC) as it eliminates the certificate management problem in traditional PKC and resolves the key escrow problem in IBC. Recently, Choi et al. and Tso et al.proposed two different efficient CL short signature schemes and claimed that the two schemes are secure against super adversaries and satisfy the strongest security. In this study, the authors show that both Choi et al.'s scheme and Tso et al.'s scheme are insecure against the strong adversaries who can replace users' public keys and have access to the signing oracle under the replaced public keys.
 

Y. Seifi, S. Suriadi, E. Foo, C. Boyd.  2014.  Security properties analysis in a TPM-based protocol. Int. J. of Security and Networks, 2014 Vol.9, No.2, pp.85 - 103.

Security protocols are designed in order to provide security properties (goals). They achieve their goals using cryptographic primitives such as key agreement or hash functions. Security analysis tools are used in order to verify whether a security protocol achieves its goals or not. The analysed property by specific purpose tools are predefined properties such as secrecy (confidentiality), authentication or non-repudiation. There are security goals that are defined by the user in systems with security requirements. Analysis of these properties is possible with general purpose analysis tools such as coloured petri nets (CPN). This research analyses two security properties that are defined in a protocol that is based on trusted platform module (TPM). The analysed protocol is proposed by Delaune to use TPM capabilities and secrets in order to open only one secret from two submitted secrets to a recipient.

2015-05-04
Alsaleh, M.N., Al-Shaer, E.A..  2014.  Security configuration analytics using video games. Communications and Network Security (CNS), 2014 IEEE Conference on. :256-264.

Computing systems today have a large number of security configuration settings that enforce security properties. However, vulnerabilities and incorrect configuration increase the potential for attacks. Provable verification and simulation tools have been introduced to eliminate configuration conflicts and weaknesses, which can increase system robustness against attacks. Most of these tools require special knowledge in formal methods and precise specification for requirements in special languages, in addition to their excessive need for computing resources. Video games have been utilized by researchers to make educational software more attractive and engaging. Publishing these games for crowdsourcing can also stimulate competition between players and increase the game educational value. In this paper we introduce a game interface, called NetMaze, that represents the network configuration verification problem as a video game and allows for attack analysis. We aim to make the security analysis and hardening usable and accurately achievable, using the power of video games and the wisdom of crowdsourcing. Players can easily discover weaknesses in network configuration and investigate new attack scenarios. In addition, the gameplay scenarios can also be used to analyze and learn attack attribution considering human factors. In this paper, we present a provable mapping from the network configuration to 3D game objects.
 

Hyun-Suk Chai, Jun-dong Cho, Jongpil Jeong.  2014.  On Security-Effective and Global Mobility Management for FPMIPv6 Networks. Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2014 Eighth International Conference on. :247-253.

In PMIPv6-based network, mobile nodes can be made smaller and lighter because the network nodes perform the mobility management-related functions on behalf of the mobile nodes. One of the protocols, Fast Handovers for Proxy Mobile IPv6 (FPMIPv6) [1] was studied by the Internet Engineering Task Force (IETF). Since FPMIPv6 adopts the entities and the concepts of Fast Handovers for Mobile IPv6 (FMIPv6) in Proxy Mobile IPv6 (PMIPv6), it reduces the packet loss. The conventional scheme has been proposed to cooperate with an Authentication, Authorization and Accounting (AAA) infrastructure for authentication of a mobile node in PMIPv6. Despite the fact that this approach resulted in the best efficiency, without beginning secured signaling messages, The PMIPv6 is vulnerable to various security threats and it does not support global mobility. In this paper, the authors analyzed the Kang-Park & ESS-FH scheme, and proposed an Enhanced Security scheme for FPMIPv6 (ESS-FP). Based on the CGA method and the public key Cryptography, ESS-FP provides a strong key exchange and key independence in addition to improving the weaknesses of FPMIPv6 and its handover latency was analyzed and compared with that of the Kang-Park scheme & ESS-FH.
 

2015-05-05
Jia-Lun Tsai.  2014.  An Improved Cross-Layer Privacy-Preserving Authentication in WAVE-Enabled VANETs. Communications Letters, IEEE. 18:1931-1934.

In 2013, Biswas and Misic proposed a new privacy-preserving authentication scheme for WAVE-based vehicular ad hoc networks (VANETs), claiming that they used a variant of the Elliptic Curve Digital Signature Algorithm (ECDSA). However, our study has discovered that the authentication scheme proposed by them is vulnerable to a private key reveal attack. Any malicious receiving vehicle who receives a valid signature from a legal signing vehicle can gain access to the signing vehicle private key from the learned valid signature. Hence, the authentication scheme proposed by Biswas and Misic is insecure. We thus propose an improved version to overcome this weakness. The proposed improved scheme also supports identity revocation and trace. Based on this security property, the CA and a receiving entity (RSU or OBU) can check whether a received signature has been generated by a revoked vehicle. Security analysis is also conducted to evaluate the security strength of the proposed authentication scheme.

Hong, J.B., Dong Seong Kim.  2014.  Scalable Security Models for Assessing Effectiveness of Moving Target Defenses. Dependable Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP International Conference on. :515-526.

Moving Target Defense (MTD) changes the attack surface of a system that confuses intruders to thwart attacks. Various MTD techniques are developed to enhance the security of a networked system, but the effectiveness of these techniques is not well assessed. Security models (e.g., Attack Graphs (AGs)) provide formal methods of assessing security, but modeling the MTD techniques in security models has not been studied. In this paper, we incorporate the MTD techniques in security modeling and analysis using a scalable security model, namely Hierarchical Attack Representation Models (HARMs), to assess the effectiveness of the MTD techniques. In addition, we use importance measures (IMs) for scalable security analysis and deploying the MTD techniques in an effective manner. The performance comparison between the HARM and the AG is given. Also, we compare the performance of using the IMs and the exhaustive search method in simulations.

2015-05-06
Yueying Huang, Jingang Zhang, Houyan Chen.  2014.  On the security of a certificateless signcryption scheme. Electronics, Computer and Applications, 2014 IEEE Workshop on. :664-667.

Signcryption is a cryptographic primitive that simultaneously realizes both the functions of public key encryption and digital signature in a logically single step, and with a cost significantly lower than that required by the traditional “signature and encryption” approach. Recently, an efficient certificateless signcryption scheme without using bilinear pairings was proposed by Zhu et al., which is claimed secure based on the assumptions that the compute Diffie-Hellman problem and the discrete logarithm problem are difficult. Although some security arguments were provided to show the scheme is secure, in this paper, we find that the signcryption construction due to Zhu et al. is not as secure as claimed. Specifically, we describe an adversary that can break the IND-CCA2 security of the scheme without any Unsigncryption query. Moreover, we demonstrate that the scheme is insecure against key replacement attack by describing a concrete attack approach.
 

Macedonio, Damiano, Merro, Massimo.  2014.  A Semantic Analysis of Key Management Protocols for Wireless Sensor Networks. Sci. Comput. Program.. 81:53–78.

Gorrieri and Martinelli’s timed Generalized Non-Deducibility on Compositions () schema is a well-known general framework for the formal verification of security protocols in a concurrent scenario. We generalise the  schema to verify wireless network security protocols. Our generalisation relies on a simple timed broadcasting process calculus whose operational semantics is given in terms of a labelled transition system which is used to derive a standard simulation theory. We apply our  framework to perform a security analysis of three well-known key management protocols for wireless sensor networks: , LEAP+ and LiSP.

2017-03-08
Bruce, N., Kim, H., Kang, Y., Lee, Y., Lee, H..  2015.  On Modeling Protocol-Based Clustering Tag in RFID Systems with Formal Security Analysis. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications. :498–505.

This paper presents an efficiency and adaptive cryptographic protocol to ensure users' privacy and data integrity in RFID system. Radio Frequency Identification technology offers more intelligent systems and applications, but privacy and security issues have to be addressed before and after its adoption. The design of the proposed model is based on clustering configuration of the involved tags where they interchange the data with the reader whenever it sends a request. This scheme provides a strong mutual authentication framework that suits for real heterogeneous RFID applications such as in supply-chain management systems, healthcare monitoring and industrial environment. In addition, we contribute with a mathematical analysis to the delay analysis and optimization in a clustering topology tag-based. Finally, a formal security and proof analysis is demonstrated to prove the effectiveness of the proposed protocol and that achieves security and privacy.

Xin, Wei, Wang, M., Shao, Shuai, Wang, Z., Zhang, Tao.  2015.  A variant of schnorr signature scheme for path-checking in RFID-based supply chains. 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). :2608–2613.

The RFID technology has attracted considerable attention in recent years, and brings convenience to supply chain management. In this paper, we concentrate on designing path-checking protocols to check the valid paths in supply chains. By entering a valid path, the check reader can distinguish whether the tags have gone through the path or not. Based on modified schnorr signature scheme, we provide a path-checking method to achieve multi-signatures and final verification. In the end, we conduct security and privacy analysis to the scheme.

Jin, Y., Zhu, H., Shi, Z., Lu, X., Sun, L..  2015.  Cryptanalysis and improvement of two RFID-OT protocols based on quadratic residues. 2015 IEEE International Conference on Communications (ICC). :7234–7239.

The ownership transfer of RFID tag means a tagged product changes control over the supply chain. Recently, Doss et al. proposed two secure RFID tag ownership transfer (RFID-OT) protocols based on quadratic residues. However, we find that they are vulnerable to the desynchronization attack. The attack is probabilistic. As the parameters in the protocols are adopted, the successful probability is 93.75%. We also show that the use of the pseudonym of the tag h(TID) and the new secret key KTID are not feasible. In order to solve these problems, we propose the improved schemes. Security analysis shows that the new protocols can resist in the desynchronization attack and other attacks. By optimizing the performance of the new protocols, it is more practical and feasible in the large-scale deployment of RFID tags.

Chen, J., Miyaj, A., Sato, H., Su, C..  2015.  Improved Lightweight Pseudo-Random Number Generators for the Low-Cost RFID Tags. 2015 IEEE Trustcom/BigDataSE/ISPA. 1:17–24.

EPC Gen2 tags are working as international RFID standards for the use in the supply chain worldwide, such tags are computationally weak devices and unable to perform even basic symmetric-key cryptographic operations. For this reason, to implement robust and secure pseudo-random number generators (PRNG) is a challenging issue for low-cost Radio-frequency identification (RFID) tags. In this paper, we study the security of LFSR-based PRNG implemented on EPC Gen2 tags and exploit LFSR-based PRNG to provide a better constructions. We provide a cryptanalysis against the J3Gen which is LFSR-based PRNG and proposed by Sugei et al. [1], [2] for EPC Gen2 tags using distinguish attack and make observations on its input using NIST randomness test. We also test the PRNG in EPC Gen2 RFID Tags by using the NIST SP800-22. As a counter-measure, we propose two modified models based on the security analysis results. We show that our results perform better than J3Gen in terms of computational and statistical property.

2017-06-27
Obermaier, Johannes, Hutle, Martin.  2016.  Analyzing the Security and Privacy of Cloud-based Video Surveillance Systems. Proceedings of the 2Nd ACM International Workshop on IoT Privacy, Trust, and Security. :22–28.

In the area of the Internet of Things, cloud-based camera surveillance systems are ubiquitously available for industrial and private environments. However, the sensitive nature of the surveillance use case imposes high requirements on privacy/confidentiality, authenticity, and availability of such systems. In this work, we investigate how currently available mass-market camera systems comply with these requirements. Considering two attacker models, we test the cameras for weaknesses and analyze for their implications. We reverse-engineered the security implementation and discovered several vulnerabilities in every tested system. These weaknesses impair the users' privacy and, as a consequence, may also damage the camera system manufacturer's reputation. We demonstrate how an attacker can exploit these vulnerabilities to blackmail users and companies by denial-of-service attacks, injecting forged video streams, and by eavesdropping private video data - even without physical access to the device. Our analysis shows that current systems lack in practice the necessary care when implementing security for IoT devices.

2017-07-24
Hibshi, Hanan.  2016.  Systematic Analysis of Qualitative Data in Security. Proceedings of the Symposium and Bootcamp on the Science of Security. :52–52.

This tutorial will introduce participants to Grounded Theory, which is a qualitative framework to discover new theory from an empirical analysis of data. This form of analysis is particularly useful when analyzing text, audio or video artifacts that lack structure, but contain rich descriptions. We will frame Grounded Theory in the context of qualitative methods and case studies, which complement quantitative methods, such as controlled experiments and simulations. We will contrast the approaches developed by Glaser and Strauss, and introduce coding theory - the most prominent qualitative method for performing analysis to discover Grounded Theory. Topics include coding frames, first- and second-cycle coding, and saturation. We will use examples from security interview scripts to teach participants: developing a coding frame, coding a source document to discover relationships in the data, developing heuristics to resolve ambiguities between codes, and performing second-cycle coding to discover relationships within categories. Then, participants will learn how to discover theory from coded data. Participants will further learn about inter-rater reliability statistics, including Cohen's and Fleiss' Kappa, Krippendorf's Alpha, and Vanbelle's Index. Finally, we will review how to present Grounded Theory results in publications, including how to describe the methodology, report observations, and describe threats to validity.

2017-11-01
Holzinger, Philipp, Triller, Stefan, Bartel, Alexandre, Bodden, Eric.  2016.  An In-Depth Study of More Than Ten Years of Java Exploitation. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :779–790.
When created, the Java platform was among the first runtimes designed with security in mind. Yet, numerous Java versions were shown to contain far-reaching vulnerabilities, permitting denial-of-service attacks or even worse allowing intruders to bypass the runtime's sandbox mechanisms, opening the host system up to many kinds of further attacks. This paper presents a systematic in-depth study of 87 publicly available Java exploits found in the wild. By collecting, minimizing and categorizing those exploits, we identify their commonalities and root causes, with the goal of determining the weak spots in the Java security architecture and possible countermeasures. Our findings reveal that the exploits heavily rely on a set of nine weaknesses, including unauthorized use of restricted classes and confused deputies in combination with caller-sensitive methods. We further show that all attack vectors implemented by the exploits belong to one of three categories: single-step attacks, restricted-class attacks, and information hiding attacks. The analysis allows us to propose ideas for improving the security architecture to spawn further research in this area.
2017-11-03
Hibshi, Hanan.  2016.  Systematic Analysis of Qualitative Data in Security. Proceedings of the Symposium and Bootcamp on the Science of Security. :52–52.
This tutorial will introduce participants to Grounded Theory, which is a qualitative framework to discover new theory from an empirical analysis of data. This form of analysis is particularly useful when analyzing text, audio or video artifacts that lack structure, but contain rich descriptions. We will frame Grounded Theory in the context of qualitative methods and case studies, which complement quantitative methods, such as controlled experiments and simulations. We will contrast the approaches developed by Glaser and Strauss, and introduce coding theory - the most prominent qualitative method for performing analysis to discover Grounded Theory. Topics include coding frames, first- and second-cycle coding, and saturation. We will use examples from security interview scripts to teach participants: developing a coding frame, coding a source document to discover relationships in the data, developing heuristics to resolve ambiguities between codes, and performing second-cycle coding to discover relationships within categories. Then, participants will learn how to discover theory from coded data. Participants will further learn about inter-rater reliability statistics, including Cohen's and Fleiss' Kappa, Krippendorf's Alpha, and Vanbelle's Index. Finally, we will review how to present Grounded Theory results in publications, including how to describe the methodology, report observations, and describe threats to validity.
2017-11-13
Mala, H., Adavoudi, A., Aghili, S. F..  2016.  Security analysis of the RBS block cipher. 2016 24th Iranian Conference on Electrical Engineering (ICEE). :130–132.

Radio Frequency Identification (RFID) systems are widely used today because of their low price, usability and being wireless. As RFID systems use wireless communication, they may encounter challenging security problems. Several lightweight encryption algorithms have been proposed so far to solve these problems. The RBS block cipher is one of these algorithms. In designing RBS, conventional block cipher elements such as S-box and P-box are not used. RBS is based on inserting redundant bits between altered plaintext bits using an encryption key Kenc. In this paper, considering not having a proper diffusion as the main defect of RBS, we propose a chosen ciphertext attack against this algorithm. The data complexity of this attack equals to N pairs of text and its time complexity equals to N decryptions, where N is the size of the encryption key Kenc.

2017-11-27
Fournaris, A. P., Papachristodoulou, L., Batina, L., Sklavos, N..  2016.  Residue Number System as a side channel and fault injection attack countermeasure in elliptic curve cryptography. 2016 International Conference on Design and Technology of Integrated Systems in Nanoscale Era (DTIS). :1–4.

Implementation attacks and more specifically Power Analysis (PA) (the dominant type of side channel attack) and fault injection (FA) attacks constitute a pragmatic hazard for scalar multiplication, the main operation behind Elliptic Curve Cryptography. There exists a wide variety of countermeasures attempting to thwart such attacks that, however, few of them explore the potential of alternative number systems like the Residue Number System (RNS). In this paper, we explore the potential of RNS as an PA-FA countermeasure and propose an PA-FA resistant scalar multiplication algorithm and provide an extensive security analysis against the most effective PA-FA techniques. We argue through a security analysis that combining traditional PA-FA countermeasures with lightweight RNS countermeasures can provide strong PA-FA resistance.

2017-12-27
Kotel, S., Sbiaa, F., Zeghid, M., Machhout, M., Baganne, A., Tourki, R..  2016.  Efficient Hybrid Encryption System Based on Block Cipher and Chaos Generator. 2016 IEEE International Conference on Computer and Information Technology (CIT). :375–382.

In recent years, more and more multimedia data are generated and transmitted in various fields. So, many encryption methods for multimedia content have been put forward to satisfy various applications. However, there are still some open issues. Each encryption method has its advantages and drawbacks. Our main goal is expected to provide a solution for multimedia encryption which satisfies the target application constraints and performs metrics of the encryption algorithm. The Advanced Encryption Standard (AES) is the most popular algorithm used in symmetric key cryptography. Furthermore, chaotic encryption is a new research direction of cryptography which is characterized by high initial-value sensitivity and good randomness. In this paper we propose a hybrid video cryptosystem which combines two encryption techniques. The proposed cryptosystem realizes the video encryption through the chaos and AES in CTR mode. Experimental results and security analysis demonstrate that this cryptosystem is highly efficient and a robust system for video encryption.

Slimane, N. B., Bouallegue, K., Machhout, M..  2017.  A novel image encryption scheme using chaos, hyper-chaos systems and the secure Hash algorithm SHA-1. 2017 International Conference on Control, Automation and Diagnosis (ICCAD). :141–145.

In this paper, we introduce a fast, secure and robust scheme for digital image encryption using chaotic system of Lorenz, 4D hyper-chaotic system and the Secure Hash Algorithm SHA-1. The encryption process consists of three layers: sub-vectors confusion and two-diffusion process. In the first layer we divide the plainimage into sub-vectors then, the position of each one is changed using the chaotic index sequence generated with chaotic attractor of Lorenz, while the diffusion layers use hyper-chaotic system to modify the values of pixels using an XOR operation. The results of security analysis such as statistical tests, differential attacks, key space, key sensitivity, entropy information and the running time are illustrated and compared to recent encryption schemes where the highest security level and speed are improved.

2018-01-16
Benjamin, B., Coffman, J., Esiely-Barrera, H., Farr, K., Fichter, D., Genin, D., Glendenning, L., Hamilton, P., Harshavardhana, S., Hom, R. et al..  2017.  Data Protection in OpenStack. 2017 IEEE 10th International Conference on Cloud Computing (CLOUD). :560–567.

As cloud computing becomes increasingly pervasive, it is critical for cloud providers to support basic security controls. Although major cloud providers tout such features, relatively little is known in many cases about their design and implementation. In this paper, we describe several security features in OpenStack, a widely-used, open source cloud computing platform. Our contributions to OpenStack range from key management and storage encryption to guaranteeing the integrity of virtual machine (VM) images prior to boot. We describe the design and implementation of these features in detail and provide a security analysis that enumerates the threats that each mitigates. Our performance evaluation shows that these security features have an acceptable cost-in some cases, within the measurement error observed in an operational cloud deployment. Finally, we highlight lessons learned from our real-world development experiences from contributing these features to OpenStack as a way to encourage others to transition their research into practice.