Visible to the public Biblio

Filters: Keyword is radar sensors  [Clear All Filters]
2022-04-19
Rodriguez, Daniel, Wang, Jing, Li, Changzhi.  2021.  Spoofing Attacks to Radar Motion Sensors with Portable RF Devices. 2021 IEEE Radio and Wireless Symposium (RWS). :73–75.
Radar sensors have shown great potential for surveillance and security authentication applications. However, a thorough analysis of their vulnerability to spoofing or replay attacks has not been performed yet. In this paper, the feasibility of performing spoofing attacks to radar sensor is studied and experimentally verified. First, a simple binary phase-shift keying system was used to generate artificial spectral components in the radar's demodulated signal. Additionally, an analog phase shifter was driven by an arbitrary signal generator to mimic the human cardio-respiratory motion. Characteristic time and frequency domain cardio-respiratory human signatures were successfully generated, which opens possibilities to perform spoofing attacks to surveillance and security continuous authentication systems based on microwave radar sensors.
2020-12-11
Abratkiewicz, K., Gromek, D., Samczynski, P..  2019.  Chirp Rate Estimation and micro-Doppler Signatures for Pedestrian Security Radar Systems. 2019 Signal Processing Symposium (SPSympo). :212—215.

A new approach to micro-Doppler signal analysis is presented in this article. Novel chirp rate estimators in the time-frequency domain were used for this purpose, which provided the chirp rate of micro-Doppler signatures, allowing the classification of objects in the urban environment. As an example verifying the method, a signal from a high-resolution radar with a linear frequency modulated continuous wave (FMCW) recording an echo reflected from a pedestrian was used to validate the proposed algorithms for chirp rate estimation. The obtained results are plotted on saturated accelerograms, giving an additional parameter dedicated for target classification in security systems utilizing radar sensors for target detection.