Visible to the public Biblio

Found 2387 results

Filters: Keyword is human factors  [Clear All Filters]
2017-11-20
Costin, Andrei.  2016.  Security of CCTV and Video Surveillance Systems: Threats, Vulnerabilities, Attacks, and Mitigations. Proceedings of the 6th International Workshop on Trustworthy Embedded Devices. :45–54.

Video surveillance, closed-circuit TV and IP-camera systems became virtually omnipresent and indispensable for many organizations, businesses, and users. Their main purpose is to provide physical security, increase safety, and prevent crime. They also became increasingly complex, comprising many communication means, embedded hardware and non-trivial firmware. However, most research to date focused mainly on the privacy aspects of such systems, and did not fully address their issues related to cyber-security in general, and visual layer (i.e., imagery semantics) attacks in particular. In this paper, we conduct a systematic review of existing and novel threats in video surveillance, closed-circuit TV and IP-camera systems based on publicly available data. The insights can then be used to better understand and identify the security and the privacy risks associated with the development, deployment and use of these systems. We study existing and novel threats, along with their existing or possible countermeasures, and summarize this knowledge into a comprehensive table that can be used in a practical way as a security checklist when assessing cyber-security level of existing or new CCTV designs and deployments. We also provide a set of recommendations and mitigations that can help improve the security and privacy levels provided by the hardware, the firmware, the network communications and the operation of video surveillance systems. We hope the findings in this paper will provide a valuable knowledge of the threat landscape that such systems are exposed to, as well as promote further research and widen the scope of this field beyond its current boundaries.

Liu, Junbin, Sridharan, Sridha, Fookes, Clinton.  2016.  Recent Advances in Camera Planning for Large Area Surveillance: A Comprehensive Review. ACM Comput. Surv.. 49:6:1–6:37.

With recent advances in consumer electronics and the increasingly urgent need for public security, camera networks have evolved from their early role of providing simple and static monitoring to current complex systems capable of obtaining extensive video information for intelligent processing, such as target localization, identification, and tracking. In all cases, it is of vital importance that the optimal camera configuration (i.e., optimal location, orientation, etc.) is determined before cameras are deployed as a suboptimal placement solution will adversely affect intelligent video surveillance and video analytic algorithms. The optimal configuration may also provide substantial savings on the total number of cameras required to achieve the same level of utility. In this article, we examine most, if not all, of the recent approaches (post 2000) addressing camera placement in a structured manner. We believe that our work can serve as a first point of entry for readers wishing to start researching into this area or engineers who need to design a camera system in practice. To this end, we attempt to provide a complete study of relevant formulation strategies and brief introductions to most commonly used optimization techniques by researchers in this field. We hope our work to be inspirational to spark new ideas in the field.

Saito, Susumu, Nakano, Teppei, Akabane, Makoto, Kobayashi, Tetsunori.  2016.  Evaluation of Collaborative Video Surveillance Platform: Prototype Development of Abandoned Object Detection. Proceedings of the 10th International Conference on Distributed Smart Camera. :172–177.

This paper evaluates a new video surveillance platform presented in a previous study, through an abandoned object detection task. The proposed platform has a function of automated detection and alerting, which is still a big challenge for a machine algorithm due to its recall-precision tradeoff problem. To achieve both high recall and high precision simultaneously, a hybrid approach using crowdsourcing after image analysis is proposed. This approach, however, is still not clear about what extent it can improve detection accuracy and raise quicker alerts. In this paper, the experiment is conducted for abandoned object detection, as one of the most common surveillance tasks. The results show that detection accuracy was improved from 50% (without crowdsourcing) to stable 95-100% (with crowdsourcing) by majority vote of 7 crowdworkers for each task. In contrast, alert time issue still remains open to further discussion since at least 7+ minutes are required to get the best performance.

2017-11-03
Zulkarnine, A. T., Frank, R., Monk, B., Mitchell, J., Davies, G..  2016.  Surfacing collaborated networks in dark web to find illicit and criminal content. 2016 IEEE Conference on Intelligence and Security Informatics (ISI). :109–114.
The Tor Network, a hidden part of the Internet, is becoming an ideal hosting ground for illegal activities and services, including large drug markets, financial frauds, espionage, child sexual abuse. Researchers and law enforcement rely on manual investigations, which are both time-consuming and ultimately inefficient. The first part of this paper explores illicit and criminal content identified by prominent researchers in the dark web. We previously developed a web crawler that automatically searched websites on the internet based on pre-defined keywords and followed the hyperlinks in order to create a map of the network. This crawler has demonstrated previous success in locating and extracting data on child exploitation images, videos, keywords and linkages on the public internet. However, as Tor functions differently at the TCP level, and uses socket connections, further technical challenges are faced when crawling Tor. Some of the other inherent challenges for advanced Tor crawling include scalability, content selection tradeoffs, and social obligation. We discuss these challenges and the measures taken to meet them. Our modified web crawler for Tor, termed the “Dark Crawler” has been able to access Tor while simultaneously accessing the public internet. We present initial findings regarding what extremist and terrorist contents are present in Tor and how this content is connected to each other in a mapped network that facilitates dark web crimes. Our results so far indicate the most popular websites in the dark web are acting as catalysts for dark web expansion by providing necessary knowledgebase, support and services to build Tor hidden services and onion websites.
Park, A. J., Beck, B., Fletche, D., Lam, P., Tsang, H. H..  2016.  Temporal analysis of radical dark web forum users. 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :880–883.
Extremist groups have turned to the Internet and social media sites as a means of sharing information amongst one another. This research study analyzes forum posts and finds people who show radical tendencies through the use of natural language processing and sentiment analysis. The forum data being used are from six Islamic forums on the Dark Web which are made available for security research. This research project uses a POS tagger to isolate keywords and nouns that can be utilized with the sentiment analysis program. Then the sentiment analysis program determines the polarity of the post. The post is scored as either positive or negative. These scores are then divided into monthly radical scores for each user. Once these time clusters are mapped, the change in opinions of the users over time may be interpreted as rising or falling levels of radicalism. Each user is then compared on a timeline to other radical users and events to determine possible connections or relationships. The ability to analyze a forum for an overall change in attitude can be an indicator of unrest and possible radical actions or terrorism.
Iliou, C., Kalpakis, G., Tsikrika, T., Vrochidis, S., Kompatsiaris, I..  2016.  Hybrid Focused Crawling for Homemade Explosives Discovery on Surface and Dark Web. 2016 11th International Conference on Availability, Reliability and Security (ARES). :229–234.
This work proposes a generic focused crawling framework for discovering resources on any given topic that reside on the Surface or the Dark Web. The proposed crawler is able to seamlessly traverse the Surface Web and several darknets present in the Dark Web (i.e. Tor, I2P and Freenet) during a single crawl by automatically adapting its crawling behavior and its classifier-guided hyperlink selection strategy based on the network type. This hybrid focused crawler is demonstrated for the discovery of Web resources containing recipes for producing homemade explosives. The evaluation experiments indicate the effectiveness of the proposed ap-proach both for the Surface and the Dark Web.
Baravalle, A., Lopez, M. S., Lee, S. W..  2016.  Mining the Dark Web: Drugs and Fake Ids. 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). :350–356.
In the last years, governmental bodies have been futilely trying to fight against dark web marketplaces. Shortly after the closing of "The Silk Road" by the FBI and Europol in 2013, new successors have been established. Through the combination of cryptocurrencies and nonstandard communication protocols and tools, agents can anonymously trade in a marketplace for illegal items without leaving any record. This paper presents a research carried out to gain insights on the products and services sold within one of the larger marketplaces for drugs, fake ids and weapons on the Internet, Agora. Our work sheds a light on the nature of the market, there is a clear preponderance of drugs, which accounts for nearly 80% of the total items on sale. The ready availability of counterfeit documents, while they make up for a much smaller percentage of the market, raises worries. Finally, the role of organized crime within Agora is discussed and presented.
Preotiuc-Pietro, Daniel, Carpenter, Jordan, Giorgi, Salvatore, Ungar, Lyle.  2016.  Studying the Dark Triad of Personality Through Twitter Behavior. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. :761–770.
Research into the darker traits of human nature is growing in interest especially in the context of increased social media usage. This allows users to express themselves to a wider online audience. We study the extent to which the standard model of dark personality – the dark triad – consisting of narcissism, psychopathy and Machiavellianism, is related to observable Twitter behavior such as platform usage, posted text and profile image choice. Our results show that we can map various behaviors to psychological theory and study new aspects related to social media usage. Finally, we build a machine learning algorithm that predicts the dark triad of personality in out-of-sample users with reliable accuracy.
Collarana, Diego, Lange, Christoph, Auer, Sören.  2016.  FuhSen: A Platform for Federated, RDF-based Hybrid Search. Proceedings of the 25th International Conference Companion on World Wide Web. :171–174.
The increasing amount of structured and semi-structured information available on the Web and in distributed information systems, as well as the Web's diversification into different segments such as the Social Web, the Deep Web, or the Dark Web, requires new methods for horizontal search. FuhSen is a federated, RDF-based, hybrid search platform that searches, integrates and summarizes information about entities from distributed heterogeneous information sources using Linked Data. As a use case, we present scenarios where law enforcement institutions search and integrate data spread across these different Web segments to identify cases of organized crime. We present the architecture and implementation of FuhSen and explain the queries that can be addressed with this new approach.
Truvé, Staffan.  2016.  Temporal Analytics for Predictive Cyber Threat Intelligence. Proceedings of the 25th International Conference Companion on World Wide Web. :867–868.
Recorded Future has developed its Temporal Analytics Engine as a general purpose platform for harvesting and analyzing unstructured text from the open, deep, and dark web, and for transforming that content into a structured representation suitable for different analyses. In this paper we present some of the key components of our system, and show how it has been adapted to the increasingly important domain of cyber threat intelligence. We also describe how our data can be used for predictive analytics, e.g. to predict the likelihood of a product vulnerability being exploited or to assess the maliciousness of an IP address.
2017-10-19
Knote, Robin, Baraki, Harun, Söllner, Matthias, Geihs, Kurt, Leimeister, Jan Marco.  2016.  From Requirement to Design Patterns for Ubiquitous Computing Applications. Proceedings of the 21st European Conference on Pattern Languages of Programs. :26:1–26:11.
Ubiquitous Computing describes a concept where computing appears around us at any time and any location. Respective systems rely on context-sensitivity and adaptability. This means that they constantly collect data of the user and his context to adapt its functionalities to certain situations. Hence, the development of Ubiquitous Computing systems is not only a technical issue and must be considered from a privacy, legal and usability perspective, too. This indicates a need for several experts from different disciplines to participate in the development process, mentioning requirements and evaluating design alternatives. In order to capture the knowledge of these interdisciplinary teams to make it reusable for similar problems, a pattern logic can be applied. In the early phase of a development project, requirement patterns are used to describe recurring requirements for similar problems, whereas in a more advanced development phase, design patterns are deployed to find a suitable design for recurring requirements. However, existing literature does not give sufficient insights on how both concepts are related and how the process of deriving design patterns from requirements (patterns) appears in practice. In our work, we give insights on how trust-related requirements for Ubiquitous Computing applications evolve to interdisciplinary design patterns. We elaborate on a six-step process using an example requirement pattern. With this contribution, we shed light on the relation of interdisciplinary requirement and design patterns and provide experienced practitioners and scholars regarding UC application development a way for systematic and effective pattern utilization.
Zhang, Chenwei, Xie, Sihong, Li, Yaliang, Gao, Jing, Fan, Wei, Yu, Philip S..  2016.  Multi-source Hierarchical Prediction Consolidation. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. :2251–2256.
In big data applications such as healthcare data mining, due to privacy concerns, it is necessary to collect predictions from multiple information sources for the same instance, with raw features being discarded or withheld when aggregating multiple predictions. Besides, crowd-sourced labels need to be aggregated to estimate the ground truth of the data. Due to the imperfection caused by predictive models or human crowdsourcing workers, noisy and conflicting information is ubiquitous and inevitable. Although state-of-the-art aggregation methods have been proposed to handle label spaces with flat structures, as the label space is becoming more and more complicated, aggregation under a label hierarchical structure becomes necessary but has been largely ignored. These label hierarchies can be quite informative as they are usually created by domain experts to make sense of highly complex label correlations such as protein functionality interactions or disease relationships. We propose a novel multi-source hierarchical prediction consolidation method to effectively exploits the complicated hierarchical label structures to resolve the noisy and conflicting information that inherently originates from multiple imperfect sources. We formulate the problem as an optimization problem with a closed-form solution. The consolidation result is inferred in a totally unsupervised, iterative fashion. Experimental results on both synthetic and real-world data sets show the effectiveness of the proposed method over existing alternatives.
Grushka - Cohen, Hagit, Sofer, Oded, Biller, Ofer, Shapira, Bracha, Rokach, Lior.  2016.  CyberRank: Knowledge Elicitation for Risk Assessment of Database Security. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. :2009–2012.
Security systems for databases produce numerous alerts about anomalous activities and policy rule violations. Prioritizing these alerts will help security personnel focus their efforts on the most urgent alerts. Currently, this is done manually by security experts that rank the alerts or define static risk scoring rules. Existing solutions are expensive, consume valuable expert time, and do not dynamically adapt to changes in policy. Adopting a learning approach for ranking alerts is complex due to the efforts required by security experts to initially train such a model. The more features used, the more accurate the model is likely to be, but this will require the collection of a greater amount of user feedback and prolong the calibration process. In this paper, we propose CyberRank, a novel algorithm for automatic preference elicitation that is effective for situations with limited experts' time and outperforms other algorithms for initial training of the system. We generate synthetic examples and annotate them using a model produced by Analytic Hierarchical Processing (AHP) to bootstrap a preference learning algorithm. We evaluate different approaches with a new dataset of expert ranked pairs of database transactions, in terms of their risk to the organization. We evaluated using manual risk assessments of transaction pairs, CyberRank outperforms all other methods for cold start scenario with error reduction of 20%.
Cerf, Sophie, Robu, Bogdan, Marchand, Nicolas, Boutet, Antoine, Primault, Vincent, Mokhtar, Sonia Ben, Bouchenak, Sara.  2016.  Toward an Easy Configuration of Location Privacy Protection Mechanisms. Proceedings of the Posters and Demos Session of the 17th International Middleware Conference. :11–12.

The widespread adoption of Location-Based Services (LBSs) has come with controversy about privacy. While leveraging location information leads to improving services through geo-contextualization, it rises privacy concerns as new knowledge can be inferred from location records, such as home/work places, habits or religious beliefs. To overcome this problem, several Location Privacy Protection Mechanisms (LPPMs) have been proposed in the literature these last years. However, every mechanism comes with its own configuration parameters that directly impact the privacy guarantees and the resulting utility of protected data. In this context, it can be difficult for a non-expert system designer to choose appropriate configuration parameters to use according to the expected privacy and utility. In this paper, we present a framework enabling the easy configuration of LPPMs. To achieve that, our framework performs an offline, in-depth automated analysis of LPPMs to provide the formal relationship between their configuration parameters and both privacy and the utility metrics. This framework is modular: by using different metrics, a system designer is able to fine-tune her LPPM according to her expected privacy and utility guarantees (i.e., the guarantee itself and the level of this guarantee). To illustrate the capability of our framework, we analyse Geo-Indistinguishability (a well known differentially private LPPM) and we provide the formal relationship between its &epsis; configuration parameter and two privacy and utility metrics.

Dupree, Janna Lynn, Devries, Richard, Berry, Daniel M., Lank, Edward.  2016.  Privacy Personas: Clustering Users via Attitudes and Behaviors Toward Security Practices. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. :5228–5239.
A primary goal of research in usable security and privacy is to understand the differences and similarities between users. While past researchers have clustered users into different groups, past categories of users have proven to be poor predictors of end-user behaviors. In this paper, we perform an alternative clustering of users based on their behaviors. Through the analysis of data from surveys and interviews of participants, we identify five user clusters that emerge from end-user behaviors-Fundamentalists, Lazy Experts, Technicians, Amateurs and the Marginally Concerned. We examine the stability of our clusters through a survey-based study of an alternative sample, showing that clustering remains consistent. We conduct a small-scale design study to demonstrate the utility of our clusters in design. Finally, we argue that our clusters complement past work in understanding privacy choices, and that our categorization technique can aid in the design of new computer security technologies.
2017-10-18
Zha, Xiaojie, Bourguet, Marie-Luce.  2016.  Experimental Study to Elicit Effective Multimodal Behaviour in Pedagogical Agents. Proceedings of the International Workshop on Social Learning and Multimodal Interaction for Designing Artificial Agents. :1:1–1:6.

This paper describes a small experimental study into the use of avatars to remediate the lecturer's absence in voice-over-slide material. Four different avatar behaviours are tested. Avatar A performs all the upper-body gestures of the lecturer, which were recorded using a 3D depth sensor. Avatar B is animated using few random gestures in order to create a natural presence that is unrelated to the speech. Avatar C only performs the lecturer's pointing gestures, as these are known to indicate important parts of a lecture. Finally, Avatar D performs "lecturer-like" gestures, but these are desynchronised with the speech. Preliminary results indicate students' preference for Avatars A and C. Although the effect of avatar behaviour on learning did not prove statistically significant, students' comments indicate that an avatar that behaves quietly and only performs some of the lecturer's gestures (pointing) is effective. The paper also presents a simple empirical method for automatically detecting pointing gestures in Kinect recorded lecture data.

Gingold, Mathew, Schiphorst, Thecla, Pasquier, Philippe.  2017.  Never Alone: A Video Agents Based Generative Audio-Visual Installation. Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems. :1425–1430.

Never Alone (2016) is a generative large-scale urban screen video-sound installation, which presents the idea of generative choreographies amongst multiple video agents, or "digital performers". This generative installation questions how we navigate in urban spaces and the ubiquity and disruptive nature of encounters within the cities' landscapes. The video agents explore precarious movement paths along the façade inhabiting landscapes that are both architectural and emotional.

Kawaguchi, Ikkaku, Kodama, Yuki, Kuzuoka, Hideaki, Otsuki, Mai, Suzuki, Yusuke.  2016.  Effect of Embodiment Presentation by Humanoid Robot on Social Telepresence. Proceedings of the Fourth International Conference on Human Agent Interaction. :253–256.

In this study, we used a humanoid robot as a telepresence robot and compared with the basic telepresence robot which can only rotate the display in order to reveal the effect of embodiment. We also investigated the effect caused by changing the body size of the humanoid robot by using two different size of robots. Our experimental results revealed that the embodiment increases the remote person's social telepresence, familiarity, and directivity. The comparison between small and big humanoid robots showed no difference and both of them were effective.

Selim, Haysam, Tayeb, Shahab, Kim, Yoohwan, Zhan, Justin, Pirouz, Matin.  2016.  Vulnerability Analysis of Iframe Attacks on Websites. Proceedings of the The 3rd Multidisciplinary International Social Networks Conference on SocialInformatics 2016, Data Science 2016. :45:1–45:6.

Clickjacking attacks are emerging threats to websites of different sizes and shapes. They are particularly used by threat agents to get more likes and/or followers in Online Social Networks (OSNs). This paper reviews the clickjacking attacks and the classic solutions to tackle various forms of those attacks. Different approaches of Cross-Site Scripting attacks are implemented in this study to study the attack tools and methods. Various iFrame attacks have been developed to tamper with the integrity of the website interactions at the application layer. By visually demonstrating the attacks such as Cross-Site scripting (XSS) and Cross-Site Request Forgery (CSRF), users will be able to have a better understanding of such attacks in their formulation and the risks associated with them.

Pérez, Joaquín, Cerezo, Eva, Serón, Francisco J..  2016.  E-VOX: A Socially Enhanced Semantic ECA. Proceedings of the International Workshop on Social Learning and Multimodal Interaction for Designing Artificial Agents. :2:1–2:6.

In this paper, we present E-VOX, an emotionally enhanced semantic ECA designed to work as a virtual assistant to search information from Wikipedia. It includes a cognitive-affective architecture that integrates an emotion model based on ALMA and the Soar cognitive architecture. This allows the ECA to take into account features needed for social interaction such as learning and emotion management. The architecture makes it possible to influence and modify the behavior of the agent depending on the feedback received from the user and other information from the environment, allowing the ECA to achieve a more realistic and believable interaction with the user. A completely functional prototype has been developed showing the feasibility of our approach.

Liu, Xin, London, Kati.  2016.  T.A.I: A Tangible AI Interface to Enhance Human-Artificial Intelligence (AI) Communication Beyond the Screen. Proceedings of the 2016 ACM Conference on Designing Interactive Systems. :281–285.

Social and emotional intelligence of computer systems is increasingly important in human-AI (Artificial Intelligence) interactions. This paper presents a tangible AI interface, T.A.I, that enhances physical engagement in digital communication between users and a conversational AI agent. We describe a compact, pneumatically shape-changing hardware design with a rich set of physical gestures that actuate on mobile devices during real-time conversations. Our user study suggests that the physical presence provided by T.A.I increased users' empathy for, and social connection with the virtual intelligent system, leading to an improved Human-AI communication experience.

Emmerich, Katharina, Masuch, Maic.  2016.  The Influence of Virtual Agents on Player Experience and Performance. Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play. :10–21.

This paper contributes a systematic research approach as well as findings of an empirical study conducted to investigate the effect of virtual agents on task performance and player experience in digital games. As virtual agents are supposed to evoke social effects similar to real humans under certain conditions, the basic social phenomenon social facilitation is examined in a testbed game that was specifically developed to enable systematical variation of single impact factors of social facilitation. Independent variables were the presence of a virtual agent (present vs. not present) and the output device (ordinary monitor vs. head-mounted display). Results indicate social inhibition effects, but only for players using a head-mounted display. Additional potential impact factors and future research directions are discussed.

Dermouche, Soumia, Pelachaud, Catherine.  2016.  Sequence-based Multimodal Behavior Modeling for Social Agents. Proceedings of the 18th ACM International Conference on Multimodal Interaction. :29–36.

The goal of this work is to model a virtual character able to converse with different interpersonal attitudes. To build our model, we rely on the analysis of multimodal corpora of non-verbal behaviors. The interpretation of these behaviors depends on how they are sequenced (order) and distributed over time. To encompass the dynamics of non-verbal signals across both modalities and time, we make use of temporal sequence mining. Specifically, we propose a new algorithm for temporal sequence extraction. We apply our algorithm to extract temporal patterns of non-verbal behaviors expressing interpersonal attitudes from a corpus of job interviews. We demonstrate the efficiency of our algorithm in terms of significant accuracy improvement over the state-of-the-art algorithms.

Miller, David.  2016.  AgentSmith: Exploring Agentic Systems. Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. :234–238.

The design of systems with independent agency to act on the environment or which can act as persuasive agents requires consideration of not only the technical aspects of design, but of the psychological, sociological, and philosophical aspects as well. Creating usable, safe, and ethical systems will require research into human-computer communication, in order to design systems that can create and maintain a relationship with users, explain their workings, and act in the best interests of both users and of the larger society.

Liao, Q. Vera, Davis, Matthew, Geyer, Werner, Muller, Michael, Shami, N. Sadat.  2016.  What Can You Do?: Studying Social-Agent Orientation and Agent Proactive Interactions with an Agent for Employees Proceedings of the 2016 ACM Conference on Designing Interactive Systems. :264–275.

Personal agent software is now in daily use in personal devices and in some organizational settings. While many advocate an agent sociality design paradigm that incorporates human-like features and social dialogues, it is unclear whether this is a good match for professionals who seek productivity instead of leisurely use. We conducted a 17-day field study of a prototype of a personal AI agent that helps employees find work-related information. Using log data, surveys, and interviews, we found individual differences in the preference for humanized social interactions (social-agent orientation), which led to different user needs and requirements for agent design. We also explored the effect of agent proactive interactions and found that they carried the risk of interruption, especially for users who were generally averse to interruptions at work. Further, we found that user differences in social-agent orientation and aversion to agent proactive interactions can be inferred from behavioral signals. Our results inform research into social agent design, proactive agent interaction, and personalization of AI agents.