Biblio
In many client-facing applications, a vulnerability in any part can compromise the entire application. This paper describes the design and implementation of Passe, a system that protects a data store from unintended data leaks and unauthorized writes even in the face of application compromise. Passe automatically splits (previously shared-memory-space) applications into sandboxed processes. Passe limits communication between those components and the types of accesses each component can make to shared storage, such as a backend database. In order to limit components to their least privilege, Passe uses dynamic analysis on developer-supplied end-to-end test cases to learn data and control-flow relationships between database queries and previous query results, and it then strongly enforces those relationships. Our prototype of Passe acts as a drop-in replacement for the Django web framework. By running eleven unmodified, off-the-shelf applications in Passe, we demonstrate its ability to provide strong security guarantees-Passe correctly enforced 96% of the applications' policies-with little additional overhead. Additionally, in the web-specific setting of the prototype, we also mitigate the cross-component effects of cross-site scripting (XSS) attacks by combining browser HTML5 sandboxing techniques with our automatic component separation.
Cloud computing brings in a lot of advantages for enterprise IT infrastructure; virtualization technology, which is the backbone of cloud, provides easy consolidation of resources, reduction of cost, space and management efforts. However, security of critical and private data is a major concern which still keeps back a lot of customers from switching over from their traditional in-house IT infrastructure to a cloud service. Existence of techniques to physically locate a virtual machine in the cloud, proliferation of software vulnerability exploits and cross-channel attacks in-between virtual machines, all of these together increases the risk of business data leaks and privacy losses. This work proposes a framework to mitigate such risks and engineer customer trust towards enterprise cloud computing. Everyday new vulnerabilities are being discovered even in well-engineered software products and the hacking techniques are getting sophisticated over time. In this scenario, absolute guarantee of security in enterprise wide information processing system seems a remote possibility; software systems in the cloud are vulnerable to security attacks. Practical solution for the security problems lies in well-engineered attack mitigation plan. At the positive side, cloud computing has a collective infrastructure which can be effectively used to mitigate the attacks if an appropriate defense framework is in place. We propose such an attack mitigation framework for the cloud. Software vulnerabilities in the cloud have different severities and different impacts on the security parameters (confidentiality, integrity, and availability). By using Markov model, we continuously monitor and quantify the risk of compromise in different security parameters (e.g.: change in the potential to compromise the data confidentiality). Whenever, there is a significant change in risk, our framework would facilitate the tenants to calculate the Mean Time to Security Failure (MTTSF) cloud and allow them to adopt a dynamic mitigation plan. This framework is an add-on security layer in the cloud resource manager and it could improve the customer trust on enterprise cloud solutions.