Biblio
Filters: Keyword is detection probability [Clear All Filters]
Covert Communication by Exploiting Node Multiplicity and Channel Variations. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.
.
2020. We present a covert (low probability of detection) communication scheme that exploits the node multiplicity and channel variations in wireless broadcast networks. The transmitter hides the covert (private) message by superimposing it onto a non-covert (public) message such that the total transmission power remains the same whether or not the covert message is transmitted. It makes the detection of the covert message impossible unless the non-covert message is decoded. We exploit the multiplicity of non-covert messages (users) to provide a degree of freedom in choosing the non-covert message such that the total detection error probability (sum of the probability of false alarm and missed detection) is maximized. We also exploit the channel variation to minimize the throughput loss on the non-covert message by sending the covert message only when the transmission rate of the non-covert message is low. We show that the total detection error probability converges fast to 1 as the number of non-covert users increases and that the total detection error probability increases as the transmit power increases, without requiring a pre-shared secret among the nodes.
A Novel Jamming Attacks Detection Approach Based on Machine Learning for Wireless Communication. 2020 International Conference on Information Networking (ICOIN). :459–464.
.
2020. Jamming attacks target a wireless network creating an unwanted denial of service. 5G is vulnerable to these attacks despite its resilience prompted by the use of millimeter wave bands. Over the last decade, several types of jamming detection techniques have been proposed, including fuzzy logic, game theory, channel surfing, and time series. Most of these techniques are inefficient in detecting smart jammers. Thus, there is a great need for efficient and fast jamming detection techniques with high accuracy. In this paper, we compare the efficiency of several machine learning models in detecting jamming signals. We investigated the types of signal features that identify jamming signals, and generated a large dataset using these parameters. Using this dataset, the machine learning algorithms were trained, evaluated, and tested. These algorithms are random forest, support vector machine, and neural network. The performance of these algorithms was evaluated and compared using the probability of detection, probability of false alarm, probability of miss detection, and accuracy. The simulation results show that jamming detection based random forest algorithm can detect jammers with a high accuracy, high detection probability and low probability of false alarm.