Biblio
Filters: Keyword is nondominated sorting genetic algorithm II [Clear All Filters]
Evolutionary Design of Hash Functions for IPv6 Network Flow Hashing. 2020 IEEE Congress on Evolutionary Computation (CEC). :1–8.
.
2020. Fast and high-quality network flow hashing is an essential operation in many high-speed network systems such as network monitoring probes. We propose a multi-objective evolutionary design method capable of evolving hash functions for IPv4 and IPv6 flow hashing. Our approach combines Cartesian genetic programming (CGP) with Non-dominated sorting genetic algorithm II (NSGA-II) and aims to optimize not only the quality of hashing, but also the execution time of the hash function. The evolved hash functions are evaluated on real data sets collected in computer network and compared against other evolved and conventionally created hash functions.
An Improved Multi-objective Particle Swarm Optimization. 2020 5th International Conference on Computational Intelligence and Applications (ICCIA). :19–23.
.
2020. For solving multi-objective optimization problems, this paper firstly combines a multi-objective evolutionary algorithm based on decomposition (MOEA/D) with good convergence and non-dominated sorting genetic algorithm II (NSGA-II) with good distribution to construct. Thus we propose a hybrid multi-objective optimization solving algorithm. Then, we consider that the population diversity needs to be improved while applying multi-objective particle swarm optimization (MOPSO) to solve the multi-objective optimization problems and an improved MOPSO algorithm is proposed. We give the distance function between the individual and the population, and the individual with the largest distance is selected as the global optimal individual to maintain population diversity. Finally, the simulation experiments are performed on the ZDT\textbackslashtextbackslashDTLZ test functions and track planning problems. The results indicate the better performance of the improved algorithms.