Visible to the public Biblio

Filters: Keyword is ROS 2  [Clear All Filters]
2022-02-03
Goerke, Niklas, Timmermann, David, Baumgart, Ingmar.  2021.  Who Controls Your Robot? An Evaluation of ROS Security Mechanisms 2021 7th International Conference on Automation, Robotics and Applications (ICARA). :60—66.
The Robot Operation System (ROS) is widely used in academia as well as the industry to build custom robot applications. Successful cyberattacks on robots can result in a loss of control for the legitimate operator and thus have a severe impact on safety if the robot is moving uncontrollably. A high level of security thus needs to be mandatory. Neither ROS 1 nor 2 in their default configuration provide protection against network based attackers. Multiple protection mechanisms have been proposed that can be used to overcome this. Unfortunately, it is unclear how effective and usable each of them are. We provide a structured analysis of the requirements these protection mechanisms need to fulfill by identifying realistic, network based attacker models and using those to derive relevant security requirements and other evaluation criteria. Based on these criteria, we analyze the protection mechanisms available and compare them to each other. We find that none of the existing protection mechanisms fulfill all of the security requirements. For both ROS 1 and 2, we discuss which protection mechanism are most relevant and give hints on how to decide on one. We hope that the requirements we identify simplify the development or enhancement of protection mechanisms that cover all aspects of ROS and that our comparison helps robot operators to choose an adequate protection mechanism for their use case.
2020-12-17
Sandoval, S., Thulasiraman, P..  2019.  Cyber Security Assessment of the Robot Operating System 2 for Aerial Networks. 2019 IEEE International Systems Conference (SysCon). :1—8.

The Robot Operating System (ROS) is a widely adopted standard robotic middleware. However, its preliminary design is devoid of any network security features. Military grade unmanned systems must be guarded against network threats. ROS 2 is built upon the Data Distribution Service (DDS) standard and is designed to provide solutions to identified ROS 1 security vulnerabilities by incorporating authentication, encryption, and process profile features, which rely on public key infrastructure. The Department of Defense is looking to use ROS 2 for its military-centric robotics platform. This paper seeks to demonstrate that ROS 2 and its DDS security architecture can serve as a functional platform for use in military grade unmanned systems, particularly in unmanned Naval aerial swarms. In this paper, we focus on the viability of ROS 2 to safeguard communications between swarms and a ground control station (GCS). We test ROS 2's ability to mitigate and withstand certain cyber threats, specifically that of rogue nodes injecting unauthorized data and accessing services that will disable parts of the UAV swarm. We use the Gazebo robotics simulator to target individual UAVs to ascertain the effectiveness of our attack vectors under specific conditions. We demonstrate the effectiveness of ROS 2 in mitigating the chosen attack vectors but observed a measurable operational delay within our simulations.